skip to main content
research-article
Public Access

RedMax: efficient & flexible approach for articulated dynamics

Published:12 July 2019Publication History
Skip Abstract Section

Abstract

It is well known that the dynamics of articulated rigid bodies can be solved in O(n) time using a recursive method, where n is the number of joints. However, when elasticity is added between the bodies (e.g., damped springs), with linearly implicit integration, the stiffness matrix in the equations of motion breaks the tree topology of the system, making the recursive O(n) method inapplicable. In such cases, the only alternative has been to form and solve the system matrix, which takes O(n3) time. We propose a new approach that is capable of solving the linearly implicit equations of motion in near linear time. Our method, which we call RedMax, is built using a combined reduced/maximal coordinate formulation. This hybrid model enables direct flexibility to apply arbitrary combinations of constraints and contact modeling in both reduced and maximal coordinates, as well as mixtures of implicit and explicit forces in either coordinate representation. We highlight RedMax's flexibility with seamless integration of deformable objects with two-way coupling, at a standard additional cost. We further highlight its flexibility by constructing an efficient internal (joint) and external (environment) frictional contact solver that can leverage bilateral joint constraints for rapid evaluation of frictional articulated dynamics.

Skip Supplemental Material Section

Supplemental Material

papers_173.mp4

References

  1. V. Acary and B. Brogliato. 2008. Numerical Methods for Nonsmooth Dynamical Systems: Applications in Mechanics and Electronics. Springer Science & Business Media.Google ScholarGoogle Scholar
  2. M. Anitescu and G. D. Hart. 2004. A Fixed-point Iteration Approach for Multibody Dynamics with Contact and Small Friction. MATH. PROG. 101, 1 (2004), 3--32. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. A. Avello, J. M. Jiménez, E. Bayo, and J. G. de Jalón. 1993. A Simple and Highly Parallelizable Method for Real-time Dynamic Simulation Based on Velocity Transformations. Comput. Methods in Appl. Mech. Eng. 107, 3 (1993), 313--339.Google ScholarGoogle ScholarCross RefCross Ref
  4. D.-S. Bae and E. J. Haug. 1987a. A Recursive Formulation for Constrained Mechanical System Dynamics: Part I. Open Loop Systems. J STRUCT MECH 15, 3 (1987), 359--382.Google ScholarGoogle Scholar
  5. D.-S. Bae and E. J. Haug. 1987b. A Recursive Formulation for Constrained Mechanical System Dynamics: Part II. Closed Loop Systems. J STRUCT MECH 15, 4 (1987), 481--506.Google ScholarGoogle Scholar
  6. D. Baraff. 1996. Linear-time Dynamics Using Lagrange Multipliers. In Annual Conference Series (Proc. SIGGRAPH). 137--146. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. D. Baraff and A. Witkin. 1998. Large Steps in Cloth Simulation. In Annual Conference Series (Proc. SIGGRAPH). 43--54. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. J. Baumgarte. 1972. Stabilization of Constraints and Integrals of Motion in Dynamical Systems. Comput. Methods in Appl. Mech. Eng. 1 (Jun 1972), 1--16.Google ScholarGoogle Scholar
  9. F. Bertails. 2009. Linear Time Super-Helices. Computer Graphics Forum (Proc. Eurographics) 28, 2 (May 2009), 417--426.Google ScholarGoogle ScholarCross RefCross Ref
  10. S. Bouaziz, S. Martin, T. Liu, L. Kavan, and M. Pauly. 2014. Projective Dynamics: Fusing Constraint Projections for Fast Simulation. ACM Trans. Graph. 33, 4, Article 154 (July 2014). Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. S. Boyd and L. Vandenberghe. 2004. Convex Optimization. Cambridge University Press. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. M. B. Cline and D. K. Pai. 2003. Post-stabilization for Rigid Body Simulation with Contact and Constraints. In IEEE Int. Conf. Robot. Autom., Vol. 3. 3744--3751.Google ScholarGoogle Scholar
  13. J. G. De Jalon and E. Bayo. 2012. Kinematic and Dynamic Simulation of Multibody Systems: The Real-Time Challenge. Springer Science & Business Media.Google ScholarGoogle Scholar
  14. S. L. Delp, F. C. Anderson, A. S. Arnold, P. Loan, A. Habib, C. T. John, E. Guendelman, and D. G. Thelen. 2007. OpenSim: Open-source Software to Create and Analyze Dynamic Simulations of Movement. IEEE T BIO-MED ENG 54, 11 (2007), 1940--1950.Google ScholarGoogle ScholarCross RefCross Ref
  15. E. D. Demaine and J. O'Rourke. 2008. Geometric Folding Algorithms: Linkages, Origami, Polyhedra (reprint ed.). Cambridge University Press. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. M. Deuss, D. Panozzo, E. Whiting, Y. Liu, P. Block, O. Sorkine-Hornung, and M. Pauly.Google ScholarGoogle Scholar
  17. 2014 Assembling Self-supporting Structures. ACM Trans. Graph. 33, 6, Article 214 (Nov. 2014). Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. E. Drumwright. 2012. Fast Dynamic Simulation of Highly Articulated Robots with Contact Via &theta;(n<sup>2</sup>) Time Dense Generalized Inertia Matrix Inversion. In Int. Conf. on Sim., Model., & Prog. for Auton. Robots. Springer, 65--76. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. E. Drumwright and D. A. Shell. 2010. Modeling Contact Friction and Joint Friction in Dynamic Robotic Simulation Using the Principle of Maximum Dissipation. In Algorithmic Foundations of Robotics IX. Springer, 249--266.Google ScholarGoogle Scholar
  20. E. Evans, Y. Hwang, S. Sueda, and T. A. Uyeno. 2018. Estimating Whole Body Flexibility in Pacific Hagfish. In The Society for Integrative & Comparative Biology.Google ScholarGoogle Scholar
  21. R. Featherstone. 1983. The Calculation of Robot Dynamics Using Articulated-body Inertias. INT J ROBOT RES 2, 1 (1983), 13--30.Google ScholarGoogle ScholarCross RefCross Ref
  22. S. Hadap. 2006. Oriented Strands: Dynamics of Stiff Multi-body System. In Proc. ACM SIGGRAPH / Eurographics Symp. Comput. Anim. (SCA '06). 91--100. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. F. Hernandez, C. Garre, R. Casillas, and M. A. Otaduy. 2011. Linear-Time Dynamics of Characters with Stiff Joints. In V Ibero-American Symposium on Computer Graphics (SIACG 2011). The Eurographics Association and Blackwell Publishing Ltd.Google ScholarGoogle Scholar
  24. S. Jain and C. K. Liu. 2011. Controlling Physics-based Characters Using Soft Contacts. ACM Trans. Graph. 30, 6, Article 163 (Dec. 2011). Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. D. M. Kaufman, S. Sueda, D. L. James, and D. K. Pai. 2008. Staggered Projections for Frictional Contact in Multibody Systems. ACM Trans. Graph. 27, 5, Article 164 (Dec 2008). Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. J. Kim. 2012. Lie Group Formulation of Articulated Rigid Body Dynamics. Technical Report. Carnegie Mellon University.Google ScholarGoogle Scholar
  27. J. Kim and N. S. Pollard. 2011. Fast Simulation of Skeleton-driven Deformable Body Characters. ACM Trans. Graph. 30, 5, Article 121 (Oct. 2011). Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. C. Lanczos. 2012. The Variational Principles of Mechanics (4 ed.). Dover Publications.Google ScholarGoogle Scholar
  29. J. Leijnse, P. Quesada, and C. Spoor. 2010. Kinematic Evaluation of the Finger's Interphalangeal Joints Coupling Mechanism---variability, Flexion-extension Differences, Triggers, Locking Swanneck Deformities, Anthropometric Correlations. Journal of Biomechanics 43, 12 (2010), 2381--2393.Google ScholarGoogle ScholarCross RefCross Ref
  30. J. Li, G. Daviet, R. Narain, F. Bertails-Descoubes, M. Overby, G. E. Brown, and L. Boissieux. 2018. An Implicit Frictional Contact Solver for Adaptive Cloth Simulation. ACM Trans. Graph. 37, 4, Article 52 (July 2018). Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. L. Liu, K. Yin, B. Wang, and B. Guo. 2013. Simulation and Control of Skeleton-driven Soft Body Characters. ACM Trans. Graph. 32, 6, Article 215 (Nov. 2013). Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. M. Müller, B. Heidelberger, M. Hennix, and J. Ratcliff. 2007. Position Based Dynamics. J VIS COMMUN IMAGE R 18, 2 (2007), 109--118. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. D. Negrut, R. Serban, and F. A. Potra. 1997. A Topology-based Approach to Exploiting Sparsity in Multibody Dynamics: Joint Formulation. J STRUCT MECH 25, 2 (1997), 221--241.Google ScholarGoogle Scholar
  34. E. P. Popov, A. F. Vereshchagin, and S. L. Zenkevich. 1978. Robot Manipulators: Dynamics and Algorithms.Google ScholarGoogle Scholar
  35. E. Quigley, Y. Yu, J. Huang, W. Lin, and R. Fedkiw. 2018. Real-Time Interactive Tree Animation. IEEE TVCG 24, 5 (May 2018), 1717--1727.Google ScholarGoogle Scholar
  36. S. Redon, N. Galoppo, and M. C. Lin. 2005. Adaptive Dynamics of Articulated Bodies. ACM Trans. Graph. 24, 3 (July 2005), 936--945. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. R. E. Roberson. 1966. A Dynamical Formalism for an Arbitrary Number of Interconnected Rigid Bodies with Reference to the Problem of Satellite Attitude Control.Google ScholarGoogle Scholar
  38. Proc. 3rd Congr. of Int. Fed. Automatic Control 1 (1966), 46D1--46D8.Google ScholarGoogle Scholar
  39. P. Sachdeva, S. Sueda, S. Bradley, M. Fain, and D. K. Pai. 2015. Biomechanical Simulation and Control of Hands and Tendinous Systems. ACM Trans. Graph. 34, 4, Article 42 (July 2015). Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. L. Sciavicco and B. Siciliano. 2012. Modelling and Control of Robot Manipulators. Springer Science & Business Media.Google ScholarGoogle Scholar
  41. R. Serban, D. Negrut, E. J. Haug, and F. A. Potra. 1997. A Topology-based Approach for Exploiting Sparsity in Multibody Dynamics in Cartesian Formulation. J STRUCT MECH 25, 3 (1997), 379--396.Google ScholarGoogle Scholar
  42. A. A. Shabana. 2013. Dynamics of Multibody Systems. Cambridge University press.Google ScholarGoogle Scholar
  43. H. V. Shin, C. F. Porst, E. Vouga, J. Ochsendorf, and F. Durand. 2016. Reconciling Elastic and Equilibrium Methods for Static Analysis. ACM Trans. Graph. 35, 2, Article 13 (Feb. 2016). Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. T. Shinar, C. Schroeder, and R. Fedkiw. 2008. Two-way Coupling of Rigid and Deformable Bodies. In Proc. ACM SIGGRAPH / Eurographics Symp. Comput. Anim. 95--103. Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. E. Sifakis and J. Barbic. 2012. FEM Simulation of 3D Deformable Solids: A Practitioner's Guide to Theory, Discretization and Model Reduction. In ACM SIGGRAPH 2012 Courses. Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. D. E. Stewart. 2000. Rigid-Body Dynamics with Friction and Impact. SIAM Rev. 42, 1 (March 2000), 3--39. Google ScholarGoogle ScholarDigital LibraryDigital Library
  47. S. Sueda, A. Kaufman, and D. K. Pai. 2008. Musculotendon Simulation for Hand Animation. ACM Trans. Graph. 27, 3, Article 83 (Aug. 2008). Google ScholarGoogle ScholarDigital LibraryDigital Library
  48. M. Tournier, M. Nesme, B. Gilles, and F. Faure. 2015. Stable Constrained Dynamics. ACM Trans. Graph. 34, 4, Article 132 (July 2015). Google ScholarGoogle ScholarDigital LibraryDigital Library
  49. M. W. Walker and D. E. Orin. 1982. Efficient Dynamic Computer Simulation of Robotic Mechanisms. J DYN SYST-T ASME 104, 3 (1982), 205--211.Google ScholarGoogle ScholarCross RefCross Ref
  50. J. M. Wang, S. R. Hamner, S. L. Delp, and V. Koltun. 2012. Optimizing Locomotion Controllers Using Biologically-based Actuators and Objectives. ACM Trans. Graph. 31, 4, Article 25 (July 2012). Google ScholarGoogle ScholarDigital LibraryDigital Library
  51. T. M. Wasfy and A. K. Noor. 2003. Computational Strategies for Flexible Multibody Systems. APPL MECH REV 56, 6 (2003), 553--613.Google ScholarGoogle ScholarCross RefCross Ref
  52. E. Whiting, H. Shin, R. Wang, J. Ochsendorf, and F. Durand. 2012. Structural Optimization of 3D Masonry Buildings. ACM Trans. Graph. 31, 6, Article 159 (Nov. 2012). Google ScholarGoogle ScholarDigital LibraryDigital Library
  53. Y. Zhou, S. Sueda, W. Matusik, and A. Shamir. 2014. Boxelization: Folding 3D Objects into Boxes. ACM Trans. Graph. 33, 4, Article 71 (July 2014). Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. RedMax: efficient & flexible approach for articulated dynamics

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in

    Full Access

    • Published in

      cover image ACM Transactions on Graphics
      ACM Transactions on Graphics  Volume 38, Issue 4
      August 2019
      1480 pages
      ISSN:0730-0301
      EISSN:1557-7368
      DOI:10.1145/3306346
      Issue’s Table of Contents

      Copyright © 2019 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 12 July 2019
      Published in tog Volume 38, Issue 4

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader