skip to main content
research-article

Spectral coarsening of geometric operators

Published:12 July 2019Publication History
Skip Abstract Section

Abstract

We introduce a novel approach to measure the behavior of a geometric operator before and after coarsening. By comparing eigenvectors of the input operator and its coarsened counterpart, we can quantitatively and visually analyze how well the spectral properties of the operator are maintained. Using this measure, we show that standard mesh simplification and algebraic coarsening techniques fail to maintain spectral properties. In response, we introduce a novel approach for spectral coarsening. We show that it is possible to significantly reduce the sampling density of an operator derived from a 3D shape without affecting the low-frequency eigenvectors. By marrying techniques developed within the algebraic multigrid and the functional maps literatures, we successfully coarsen a variety of isotropic and anisotropic operators while maintaining sparsity and positive semi-definiteness. We demonstrate the utility of this approach for applications including operatorsensitive sampling, shape matching, and graph pooling for convolutional neural networks.

Skip Supplemental Material Section

Supplemental Material

papers_180.mp4

References

  1. Martin S. Andersen, Joachim Dahl, and Lieven Vandenberghe. 2010. Implementation of nonsymmetric interior-point methods for linear optimization over sparse matrix cones. Mathematical Programming Computation 2, 3 (Dec 2010).Google ScholarGoogle ScholarCross RefCross Ref
  2. Mathieu Andreux, Emanuele Rodola, Mathieu Aubry, and Daniel Cremers. 2014. Anisotropic Laplace-Beltrami operators for shape analysis. In European Conference on Computer Vision. Springer, 299--312.Google ScholarGoogle Scholar
  3. George B Arfken and Hans J Weber. 1999. Mathematical methods for physicists.Google ScholarGoogle Scholar
  4. Mathieu Aubry, Ulrich Schlickewei, and Daniel Cremers. 2011. The wave kernel signature: A quantum mechanical approach to shape analysis. In Computer Vision Workshops (ICCV Workshops), 2011 IEEE International Conference on. IEEE, 1626--1633.Google ScholarGoogle ScholarCross RefCross Ref
  5. Mikhail Belkin, Jian Sun, and Yusu Wang. 2009. Constructing Laplace operator from point clouds in R d. In Proceedings of the twentieth annual ACM-SIAM symposium on Discrete algorithms. Society for Industrial and Applied Mathematics, 1031--1040. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. William N Bell. 2008. Algebraic multigrid for discrete differential forms. (2008).Google ScholarGoogle Scholar
  7. Gaurav Bharaj, David IW Levin, James Tompkin, Yun Fei, Hanspeter Pfister, Wojciech Matusik, and Changxi Zheng. 2015. Computational design of metallophone contact sounds. ACM Transactions on Graphics (TOG) 34, 6 (2015), 223. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Stephen Boyd and Lieven Vandenberghe. 2004. Convex optimization. Cambridge university press. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. William L Briggs, Steve F McCormick, et al. 2000. A multigrid tutorial. Vol. 72. Siam.Google ScholarGoogle Scholar
  10. Michael M Bronstein, Joan Bruna, Yann LeCun, Arthur Szlam, and Pierre Vandergheynst. 2017. Geometric deep learning: going beyond euclidean data. IEEE Signal Processing Magazine 34, 4 (2017), 18--42.Google ScholarGoogle Scholar
  11. Peter Burt and Edward Adelson. 1983. The Laplacian pyramid as a compact image code. IEEE Transactions on communications 31, 4 (1983), 532--540.Google ScholarGoogle Scholar
  12. Desai Chen, David I. Levin, Wojciech Matusik, and Danny M. Kaufman. 2017. Dynamics-Aware Numerical Coarsening for Fabrication Design. ACM Trans. Graph. 34, 4 (2017). Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Desai Chen, David I. W. Levin, Shinjiro Sueda, and Wojciech Matusik. 2015. Data-driven Finite Elements for Geometry and Material Design. ACM Trans. Graph. 34, 4 (2015). Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Jiong Chen, Hujun Bao, Tianyu Wang, Mathieu Desbrun, and Jin Huang. 2018. Numerical Coarsening Using Discontinuous Shape Functions. ACM Trans. Graph. 37, 4 (2018). Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Jie Chen and Ilya Safro. 2011. Algebraic distance on graphs. SIAM Journal on Scientific Computing 33, 6 (2011), 3468--3490. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Paolo Cignoni, Marco Callieri, Massimiliano Corsini, Matteo Dellepiane, Fabio Ganovelli, and Guido Ranzuglia. 2008. Meshlab: an open-source mesh processing tool.. In Eurographics Italian chapter conference, Vol. 2008. 129--136.Google ScholarGoogle Scholar
  17. Paolo Cignoni, Claudio Montani, and Roberto Scopigno. 1998. A comparison of mesh simplification algorithms. Computers & Graphics 22, 1 (1998), 37--54.Google ScholarGoogle ScholarCross RefCross Ref
  18. Gregory Cohen, Saeed Afshar, Jonathan Tapson, and André van Schaik. 2017. EMNIST: an extension of MNIST to handwritten letters. arXiv preprint arXiv:1702.05373 (2017).Google ScholarGoogle Scholar
  19. David Cohen-Steiner, Pierre Alliez, and Mathieu Desbrun. 2004. Variational shape approximation. ACM Trans. on Graph. (2004). Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Etienne Corman, Justin Solomon, Mirela Ben-Chen, Leonidas Guibas, and Maks Ovsjanikov. 2017. Functional characterization of intrinsic and extrinsic geometry. ACM Transactions on Graphics (TOG) 36, 2 (2017), 14. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. 2016. Convolutional neural networks on graphs with fast localized spectral filtering. In Advances in Neural Information Processing Systems. 3844--3852. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Mathieu Desbrun, Mark Meyer, Peter Schröder, and Alan H Barr. 1999. Implicit fairing of irregular meshes using diffusion and curvature flow. In Proceedings of the 26th annual conference on Computer graphics and interactive techniques. ACM Press/Addison-Wesley Publishing Co., 317--324. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Timothy Dozat. 2016. Incorporating nesterov momentum into adam. (2016).Google ScholarGoogle Scholar
  24. Matthew Fisher, Boris Springborn, Alexander I Bobenko, and Peter Schroder. 2006. An algorithm for the construction of intrinsic Delaunay triangulations with applications to digital geometry processing. In ACM SIGGRAPH 2006 Courses. ACM, 69--74. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Michael Garland and Paul S Heckbert. 1997. Surface simplification using quadric error metrics. In Proceedings of the 24th annual conference on Computer graphics and interactive techniques. ACM Press/Addison-Wesley Publishing Co., 209--216. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Michael Garland and Paul S Heckbert. 1998. Simplifying surfaces with color and texture using quadric error metrics. In Visualization'98. Proceedings. IEEE, 263--269. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Daniela Giorgi, Silvia Biasotti, and Laura Paraboschi. 2007. SHape REtrieval Contest 2007: Watertight Models Track. http://watertight.ge.imati.cnr.it/.Google ScholarGoogle Scholar
  28. Igor Guskov, Andrei Khodakovsky, Peter Schröder, and Wim Sweldens. 2002. Hybrid meshes: multiresolution using regular and irregular refinement. In Proceedings of the eighteenth annual symposium on Computational geometry. ACM, 264--272. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Hugues Hoppe. 1996. Progressive meshes. In Proceedings of the 23rd annual conference on Computer graphics and interactive techniques. ACM, 99--108. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Hugues Hoppe. 1999. New quadric metric for simplifying meshes with appearance attributes. In Visualization'99. Proceedings. IEEE, 59--510. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Hugues Hoppe, Tony DeRose, Tom Duchamp, John McDonald, and Werner Stuetzle. 1993. Mesh Optimization. In Proc. SIGGRAPH. 19--26. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Yixin Hu, Qingnan Zhou, Xifeng Gao, Alec Jacobson, Denis Zorin, and Daniele Panozzo. 2018. Tetrahedral meshing in the wild. ACM Transactions on Graphics (TOG) 37, 4 (2018), 60. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Alec Jacobson, Daniele Panozzo, et al. 2018. libigl: A simple C++ geometry processing library. http://libigl.github.io/libigl/.Google ScholarGoogle Scholar
  34. Miao Jin, Junho Kim, Feng Luo, and Xianfeng Gu. 2008. Discrete surface Ricci flow. IEEE Transactions on Visualization and Computer Graphics 14, 5 (2008), 1030--1043. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Karsten Kahl and Matthias Rottmann. 2018. Least Angle Regression Coarsening in Bootstrap Algebraic Multigrid. arXiv preprint arXiv:1802.00595 (2018).Google ScholarGoogle Scholar
  36. Lily Kharevych, Patrick Mullen, Houman Owhadi, and Mathieu Desbrun. 2009. Numerical coarsening of inhomogeneous elastic materials. ACM Trans. on Graph. (2009). Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Vladimir G Kim, Yaron Lipman, and Thomas Funkhouser. 2011. Blended intrinsic maps. In ACM Transactions on Graphics (TOG), Vol. 30. ACM, 79. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Rasmus Kyng and Sushant Sachdeva. 2016. Approximate gaussian elimination for laplacians-fast, sparse, and simple. In Foundations of Computer Science (FOCS), 2016 IEEE 57th Annual Symposium on. IEEE, 573--582.Google ScholarGoogle ScholarCross RefCross Ref
  39. Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. 1998. Gradient-based learning applied to document recognition. Proc. IEEE 86, 11 (1998), 2278--2324.Google ScholarGoogle ScholarCross RefCross Ref
  40. Dingzeyu Li, Yun Fei, and Changxi Zheng. 2015. Interactive Acoustic Transfer Approximation for Modal Sound. ACM Trans. Graph. 35, 1 (2015). Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. Or Litany, Tal Remez, Emanuele Rodolà, Alexander M Bronstein, and Michael M Bronstein. 2017. Deep Functional Maps: Structured Prediction for Dense Shape Correspondence.. In ICCV. 5660--5668.Google ScholarGoogle Scholar
  42. Oren E Livne and Achi Brandt. 2012. Lean algebraic multigrid (LAMG): Fast graph Laplacian linear solver. SIAM Journal on Scientific Computing 34, 4 (2012), B499--B522.Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. Richard H MacNeal. 1949. The solution of partial differential equations by means of electrical networks. Ph.D. Dissertation. California Institute of Technology.Google ScholarGoogle Scholar
  44. Thomas A Manteuffel, Luke N Olson, Jacob B Schroder, and Ben S Southworth. 2017. A Root-Node-Based Algebraic Multigrid Method. SIAM Journal on Scientific Computing 39, 5 (2017), S723--S756.Google ScholarGoogle ScholarCross RefCross Ref
  45. Ahmad Nasikun, Christopher Brandt, and Klaus Hildebrandt. 2018. Fast Approximation of Laplace-Beltrami Eigenproblems. In Computer Graphics Forum, Vol. 37. Wiley Online Library, 121--134.Google ScholarGoogle Scholar
  46. Dorian Nogneng and Maks Ovsjanikov. 2017. Informative descriptor preservation via commutativity for shape matching. In Computer Graphics Forum, Vol. 36. Wiley Online Library, 259--267. Google ScholarGoogle ScholarDigital LibraryDigital Library
  47. Luke N Olson, Jacob Schroder, and Raymond S Tuminaro. 2010. A new perspective on strength measures in algebraic multigrid. Numerical Linear Algebra with Applications 17, 4 (2010), 713--733.Google ScholarGoogle ScholarCross RefCross Ref
  48. Maks Ovsjanikov, Mirela Ben-Chen, Justin Solomon, Adrian Butscher, and Leonidas Guibas. 2012. Functional maps: a flexible representation of maps between shapes. ACM Transactions on Graphics (TOG) 31, 4 (2012), 30. Google ScholarGoogle ScholarDigital LibraryDigital Library
  49. A Cengiz Öztireli, Marc Alexa, and Markus Gross. 2010. Spectral sampling of manifolds. In ACM Transactions on Graphics (TOG), Vol. 29. ACM, 168. Google ScholarGoogle ScholarDigital LibraryDigital Library
  50. Gabriel Peyré and Stéphane Mallat. 2005. Surface compression with geometric bandelets. In ACM Transactions on Graphics (TOG), Vol. 24. ACM, 601--608. Google ScholarGoogle ScholarDigital LibraryDigital Library
  51. Ulrich Pinkall and Konrad Polthier. 1993. Computing discrete minimal surfaces and their conjugates. Experimental mathematics 2, 1 (1993), 15--36.Google ScholarGoogle Scholar
  52. Jovan Popović and Hugues Hoppe. 1997. Progressive simplicial complexes. In Proceedings of the 24th annual conference on Computer graphics and interactive techniques. ACM Press/Addison-Wesley Publishing Co., 217--224. Google ScholarGoogle ScholarDigital LibraryDigital Library
  53. Yixuan Qiu. 2018. spectra: C++ Library For Large Scale Eigenvalue Problems.Google ScholarGoogle Scholar
  54. https://github.com/yixuan/spectra/.Google ScholarGoogle Scholar
  55. John W Ruge and Klaus Stüben. 1987. Algebraic multigrid. In Multigrid methods. SIAM, 73--130.Google ScholarGoogle Scholar
  56. Raif M Rustamov, Maks Ovsjanikov, Omri Azencot, Mirela Ben-Chen, Frédéric Chazal, and Leonidas Guibas. 2013. Map-based exploration of intrinsic shape differences and variability. ACM Transactions on Graphics (TOG) 32, 4 (2013), 72. Google ScholarGoogle ScholarDigital LibraryDigital Library
  57. Peter Schroder. 1996. Wavelets in computer graphics. Proc. IEEE 84, 4 (1996), 615--625.Google ScholarGoogle ScholarCross RefCross Ref
  58. William J Schroeder, Jonathan A Zarge, and William E Lorensen. 1992. Decimation of triangle meshes. In ACM siggraph computer graphics, Vol. 26. ACM, 65--70. Google ScholarGoogle ScholarDigital LibraryDigital Library
  59. Andrei Sharf, Thomas Lewiner, Gil Shklarski, Sivan Toledo, and Daniel Cohen-Or. 2007. Interactive topology-aware surface reconstruction. ACM Trans. on Graph. (2007). Google ScholarGoogle ScholarDigital LibraryDigital Library
  60. Anja Struyf, Mia Hubert, and Peter Rousseeuw. 1997. Clustering in an Object-Oriented Environment. Journal of Statistical Software (1997).Google ScholarGoogle Scholar
  61. Klaus Stuben. 2000. Algebraic multigrid (AMG): an introduction with applications. Multigrid (2000).Google ScholarGoogle Scholar
  62. Yifan Sun and Lieven Vandenberghe. 2015. Decomposition methods for sparse matrix nearness problems. SIAM J. Matrix Anal. Appl. 36, 4 (2015), 1691--1717.Google ScholarGoogle ScholarCross RefCross Ref
  63. Rasmus Tamstorf, Toby Jones, and Stephen F McCormick. 2015. Smoothed aggregation multigrid for cloth simulation. ACM Trans. on Graph. (2015). Google ScholarGoogle ScholarDigital LibraryDigital Library
  64. Lieven Vandenberghe and Martin S. Andersen. 2015. Chordal Graphs and Semidefinite Optimization. Found. Trends Optim. 1, 4 (2015). Google ScholarGoogle ScholarDigital LibraryDigital Library
  65. Matthias Vestner, Zorah Lähner, Amit Boyarski, Or Litany, Ron Slossberg, Tal Remez, Emanuele Rodolà, Alexander M. Bronstein, Michael M. Bronstein, Ron Kimmel, and Daniel Cremers. 2017. Efficient Deformable Shape Correspondence via Kernel Matching. In 3DV.Google ScholarGoogle Scholar
  66. Han Xiao, Kashif Rasul, and Roland Vollgraf. 2017. Fashion-MNIST: a Novel Image Dataset for Benchmarking Machine Learning Algorithms. arXiv:cs.LG/cs.LG/1708.07747Google ScholarGoogle Scholar
  67. Jinchao Xu and Ludmil Zikatanov. 2017. Algebraic multigrid methods. Acta Numerica 26 (2017), 591--721.Google ScholarGoogle ScholarCross RefCross Ref
  68. Yang Zheng, Giovanni Fantuzzi, Antonis Papachristodoulou, Paul Goulart, and Andrew Wynn. 2017. Fast ADMM for semidefinite programs with chordal sparsity. In American Control Conference.Google ScholarGoogle ScholarCross RefCross Ref
  69. Qingnan Zhou and Alec Jacobson. 2016. Thingi10K: A Dataset of 10,000 3D-Printing Models. arXiv preprint arXiv:1605.04797 (2016).Google ScholarGoogle Scholar

Index Terms

  1. Spectral coarsening of geometric operators

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in

      Full Access

      • Published in

        cover image ACM Transactions on Graphics
        ACM Transactions on Graphics  Volume 38, Issue 4
        August 2019
        1480 pages
        ISSN:0730-0301
        EISSN:1557-7368
        DOI:10.1145/3306346
        Issue’s Table of Contents

        Copyright © 2019 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 12 July 2019
        Published in tog Volume 38, Issue 4

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader