skip to main content
research-article

Sample-based Monte Carlo denoising using a kernel-splatting network

Published:12 July 2019Publication History
Skip Abstract Section

Abstract

Denoising has proven to be useful to efficiently generate high-quality Monte Carlo renderings. Traditional pixel-based denoisers exploit summary statistics of a pixel's sample distributions, which discards much of the samples' information and limits their denoising power. On the other hand, sample-based techniques tend to be slow and have difficulties handling general transport scenarios. We present the first convolutional network that can learn to denoise Monte Carlo renderings directly from the samples. Learning the mapping between samples and images creates new challenges for the network architecture design: the order of the samples is arbitrary, and they should be treated in a permutation invariant manner. To address these challenges, we develop a novel kernel-predicting architecture that splats individual samples onto nearby pixels. Splatting is a natural solution to situations such as motion blur, depth-of-field and many light transport paths, where it is easier to predict which pixels a sample contributes to, rather than a gather approach that needs to figure out, for each pixel, which samples (or nearby pixels) are relevant. Compared to previous state-of-the-art methods, ours is robust to the severe noise of low-sample count images (e.g. 8 samples per pixel) and yields higher-quality results both visually and numerically. Our approach retains the generality and efficiency of pixel-space methods while enjoying the expressiveness and accuracy of the more complex sample-based approaches.

References

  1. Miika Aittala and Frédo Durand. 2018. Burst image deblurring using permutation invariant convolutional neural networks. ECCV (2018).Google ScholarGoogle Scholar
  2. Steve Bako, Thijs Vogels, Brian Mcwilliams, Mark Meyer, Jan Novák, Alex Harvill, Pradeep Sen, Tony Derose, and Fabrice Rousselle. 2017. Kernel-predicting convolutional networks for denoising Monte Carlo renderings. ACM SIGGRAPH (2017). Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Pablo Bauszat, Martin Eisemann, S John, and M Magnor. 2015. Sample-based manifold filtering for interactive global illumination and depth of field. Computer Graphics Forum (2015). Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Pablo Bauszat, Martin Eisemann, and Marcus Magnor. 2011. Guided Image Filtering for Interactive High-quality Global Illumination. Computer Graphics Forum (Proc. EGSR) (2011). Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Laurent Belcour, Cyril Soler, Kartic Subr, Nicolas Holzschuch, and Fredo Durand. 2013. 5D covariance tracing for efficient defocus and motion blur. ACM TOG (2013). Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Benedikt Bitterli. 2016. Rendering resources. https://benedikt-bitterli.me/resources.Google ScholarGoogle Scholar
  7. Benedikt Bitterli, Fabrice Rousselle, Bochang Moon, José A. Iglesias-Guitiàn, David Adler, Kenny Mitchell, Wojciech Jarosz, and Jan Novák. 2016. Nonlinearly Weighted First-order Regression for Denoising Monte Carlo Renderings. Computer Graphics Forum (Proc. EGSR) (2016).Google ScholarGoogle Scholar
  8. Nicolas Bonneel, James Tompkin, Kalyan Sunkavalli, Deqing Sun, Sylvain Paris, and Hanspeter Pfister. 2015. Blind Video Temporal Consistency. ACM SIGGRAPH Asia (2015). Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Chakravarty R. Alla Chaitanya, Anton S. Kaplanyan, Christoph Schied, Marco Salvi, Aaron Lefohn, Derek Nowrouzezahrai, and Timo Aila. 2017. Interactive Reconstruction of Monte Carlo Image Sequences Using a Recurrent Denoising Autoencoder. ACM SIGGRAPH (2017).Google ScholarGoogle Scholar
  10. Angel X. Chang, Thomas Funkhouser, Leonidas Guibas, Pat Hanrahan, Qixing Huang, Zimo Li, Silvio Savarese, Manolis Savva, Shuran Song, Hao Su, Jianxiong Xiao, Li Yi, and Fisher Yu. 2015. ShapeNet: An Information-Rich 3D Model Repository. CoRR (2015).Google ScholarGoogle Scholar
  11. M. Cimpoi, S. Maji, I. Kokkinos, S. Mohamed, and A. Vedaldi. 2014. Describing Textures in the Wild. CVPR (2014). Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Mauricio Delbracio, Pablo Musé, Antoni Buades, Julien Chauvier, Nicholas Phelps, and Jean-Michel Morel. 2014. Boosting Monte Carlo rendering by ray histogram fusion. ACM TOG (2014). Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Frédo Durand, Nicolas Holzschuch, Cyril Soler, Eric Chan, and François X Sillion. 2005. A frequency analysis of light transport. ACM SIGGRAPH (2005). Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Kevin Egan, Florian Hecht, Frédo Durand, and Ravi Ramamoorthi. 2011. Frequency analysis and sheared filtering for shadow light fields of complex occluders. ACM TOG (2011). Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Kevin Egan, Yu-Ting Tseng, Nicolas Holzschuch, Frédo Durand, and Ravi Ramamoorthi. 2009. Frequency analysis and sheared reconstruction for rendering motion blur. ACM SIGGRAPH (2009). Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Eduardo SL Gastal and Manuel M Oliveira. 2012. Adaptive manifolds for real-time high-dimensional filtering. ACM SIGGRAPH (2012).Google ScholarGoogle Scholar
  17. Toshiya Hachisuka, Wojciech Jarosz, Richard Peter Weistroffer, Kevin Dale, Greg Humphreys, Matthias Zwicker, and Henrik Wann Jensen. 2008. Multidimensional adaptive sampling and reconstruction for ray tracing. ACM SIGGRAPH (2008). Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Kaiming He, Jian Sun, and Xiaoou Tang. 2010. Guided image filtering. ECCV (2010).Google ScholarGoogle Scholar
  19. Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2015. Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. ICCV (2015). Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. James T. Kajiya. 1986. The Rendering Equation. ACM SIGGRAPH (1986). Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Nima Khademi Kalantari, Steve Bako, and Pradeep Sen. 2015. A Machine Learning Approach for Filtering Monte Carlo Noise. ACM SIGGRAPH (2015).Google ScholarGoogle Scholar
  22. Nima Khademi Kalantari and Pradeep Sen. 2013. Removing the noise in Monte Carlo rendering with general image denoising algorithms. Computer Graphics Forum (Proc. EG) (2013).Google ScholarGoogle Scholar
  23. Diederick P Kingma and Jimmy Ba. 2015. Adam: A method for stochastic optimization. International Conference on Learning Representations (2015).Google ScholarGoogle Scholar
  24. Thomas Kollig and Alexander Keller. 2002. Efficient multidimensional sampling. Computer Graphics Forum (Proc. EG) (2002).Google ScholarGoogle Scholar
  25. Jaakko Lehtinen, Timo Aila, Jiawen Chen, Samuli Laine, and Frédo Durand. 2011. Temporal light field reconstruction for rendering distribution effects. ACM SIGGRAPH (2011). Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Jaakko Lehtinen, Timo Aila, Samuli Laine, and Frédo Durand. 2012. Reconstructing the indirect light field for global illumination. ACM SIGGRAPH (2012). Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Thomas Leimkühler, Hans-Peter Seidel, and Tobias Ritschel. 2018. Laplacian kernel splatting for efficient depth-of-field and motion blur synthesis or reconstruction. ACM SIGGRAPH (2018).Google ScholarGoogle Scholar
  28. Tzu-Mao Li, Michaël Gharbi, Andrew Adams, Frédo Durand, and Jonathan Ragan-Kelley. 2018. Differentiable programming for image processing and deep learning in Halide. ACM SIGGRAPH (2018). Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Tzu-Mao Li, Yu-Ting Wu, and Yung-Yu Chuang. 2012. SURE-based optimization for adaptive sampling and reconstruction. ACM SIGGRAPH Asia (2012). Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Michael Mara, Morgan McGuire, Benedikt Bitterli, and Wojciech Jarosz. 2017. An Efficient Denoising Algorithm for Global Illumination. High Performance Graphics (2017). Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Michael D McCool. 1999. Anisotropic diffusion for Monte Carlo noise reduction. ACM TOG (1999). Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Soham Uday Mehta, JiaXian Yao, Ravi Ramamoorthi, and Fredo Durand. 2014. Factored Axis-aligned Filtering for Rendering Multiple Distribution Effects. ACM SIGGRAPH (2014).Google ScholarGoogle Scholar
  33. Bochang Moon, Nathan Carr, and Sung-Eui Yoon. 2014. Adaptive rendering based on weighted local regression. ACM TOG (2014). Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Ryan S Overbeck, Craig Donner, and Ravi Ramamoorthi. 2009. Adaptive wavelet rendering. ACM SIGGRAPH Asia (2009). Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito, Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. 2017. Automatic differentiation in PyTorch. (2017).Google ScholarGoogle Scholar
  36. Matt Pharr and Greg Humphreys. 2010. Physically based rendering: from theory to implementation. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Matt Pharr, Wenzel Jakob, and Greg Humphreys. 2016. Physically based rendering: From theory to implementation. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Charles Ruizhongtai Qi, Hao Su, Kaichun Mo, and Leonidas J. Guibas. 2017. PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation. CVPR (2017).Google ScholarGoogle Scholar
  39. Jonathan Ragan-Kelley, Andrew Adams, Sylvain Paris, Marc Levoy, Saman Amarasinghe, and Frédo Durand. 2012. Decoupling Algorithms from Schedules for Easy Optimization of Image Processing Pipelines. ACM SIGGRAPH (2012). Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Olaf Ronneberger, Philipp Fischer, and Thomas Brox. 2015. U-net: Convolutional networks for biomedical image segmentation. International Conference on Medical Image Computing and Computer-Assisted Intervention (2015).Google ScholarGoogle ScholarCross RefCross Ref
  41. Fabrice Rousselle, Claude Knaus, and Matthias Zwicker. 2012. Adaptive rendering with non-local means filtering. ACM SIGGRAPH Asia (2012). Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. Fabrice Rousselle, Marco Manzi, and Matthias Zwicker. 2013. Robust denoising using feature and color information. Computer Graphics Forum (Proc. PG) (2013).Google ScholarGoogle Scholar
  43. Holly E. Rushmeier and Gregory J. Ward. 1994. Energy Preserving Non-linear Filters. ACM SIGGRAPH (1994). Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. Christoph Schied, Anton Kaplanyan, Chris Wyman, Anjul Patney, Chakravarty R. Alla Chaitanya, John Burgess, Shiqiu Liu, Carsten Dachsbacher, Aaron Lefohn, and Marco Salvi. 2017. Spatiotemporal Variance-guided Filtering: Real-time Reconstruction for Path-traced Global Illumination. High Performance Graphics (2017). Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. Pradeep Sen and Soheil Darabi. 2012. On filtering the noise from the random parameters in Monte Carlo rendering. ACM TOG (2012). Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. Shuran Song, Fisher Yu, Andy Zeng, Angel X Chang, Manolis Savva, and Thomas Funkhouser. 2017. Semantic Scene Completion from a Single Depth Image. CVPR (2017).Google ScholarGoogle Scholar
  47. Thijs Vogels, Fabrice Rousselle, Brian McWilliams, Gerhard Röthlin, Alex Harvill, David Adler, Mark Meyer, and Jan Novák. 2018. Denoising with kernel prediction and asymmetric loss functions. ACM SIGGRAPH (2018). Google ScholarGoogle ScholarDigital LibraryDigital Library
  48. Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P Simoncelli. 2004. Image quality assessment: from error visibility to structural similarity. IEEE TIP (2004). Google ScholarGoogle ScholarDigital LibraryDigital Library
  49. Gregory J. Ward, Francis M. Rubinstein, and Robert D. Clear. 1988. A Ray Tracing Solution for Diffuse Interreflection. ACM SIGGRAPH (1988). Google ScholarGoogle ScholarDigital LibraryDigital Library
  50. Greg Zaal. 2016. HDRI Haven. https://hdrihaven.com.Google ScholarGoogle Scholar
  51. Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barnabas Poczos, Ruslan R Salakhutdinov, and Alexander J Smola. 2017. Deep sets. NIPS (2017). Google ScholarGoogle ScholarDigital LibraryDigital Library
  52. Henning Zimmer, Fabrice Rousselle, Wenzel Jakob, Oliver Wang, David Adler, Wojciech Jarosz, Olga Sorkine-Hornung, and Alexander Sorkine-Hornung. 2015. Path-space Motion Estimation and Decomposition for Robust Animation Filtering. Computer Graphics Forum (Proc. EGSR) (2015).Google ScholarGoogle Scholar
  53. M. Zwicker, W. Jarosz, J. Lehtinen, B. Moon, R. Ramamoorthi, F. Rousselle, P. Sen, C. Soler, and S.-E. Yoon. 2015. Recent Advances in Adaptive Sampling and Reconstruction for Monte Carlo Rendering. Computer Graphics Forum (Proc. EG) (2015). Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Sample-based Monte Carlo denoising using a kernel-splatting network

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in

        Full Access

        • Published in

          cover image ACM Transactions on Graphics
          ACM Transactions on Graphics  Volume 38, Issue 4
          August 2019
          1480 pages
          ISSN:0730-0301
          EISSN:1557-7368
          DOI:10.1145/3306346
          Issue’s Table of Contents

          Copyright © 2019 ACM

          Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 12 July 2019
          Published in tog Volume 38, Issue 4

          Permissions

          Request permissions about this article.

          Request Permissions

          Check for updates

          Qualifiers

          • research-article

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader