Abstract
We introduce variable thickness, viscous vortex filaments. These can model such varied phenomena as underwater bubble rings or the intricate "chandeliers" formed by ink dropping into fluid. Treating the evolution of such filaments as an instance of Newtonian dynamics on a Riemannian configuration manifold we are able to extend classical work in the dynamics of vortex filaments through inclusion of viscous drag forces. The latter must be accounted for in low Reynolds number flows where they lead to significant variations in filament thickness and form an essential part of the observed dynamics. We develop and document both the underlying theory and associated practical numerical algorithms.
Supplemental Material
Available for Download
We introduce variable thickness, viscous vortex filaments. These can model such varied phenomena as underwater bubble rings or the intricate "chandeliers" formed by ink dropping into fluid. Treating the evolution of such filaments as an instance of Newtonian dynamics on a Riemannian configuration manifold we are able to extend classical work in the dynamics of vortex filaments through inclusion of viscous drag forces. The latter must be accounted for in low Reynolds number flows where they lead to significant variations in filament thickness and form an essential part of the observed dynamics. We develop and document both the underlying theory and associated practical numerical algorithms.More information is available at https://www3.math.tu-berlin.de/geometrie/wp_padilla/on_bubble_rings_and_ink_chandeliers/
- Alexis Angelidis and Fabrice Neyret. 2005. Simulation of Smoke based on Vortex Filament Primitives. In Proc. Symp. Comp. Anim. ACM, 87--96. Google Scholar
Digital Library
- Vladimir I. Arnold and Boris A. Khesin. 1998. Topological Methods in Hydrodynamics. Springer. Google Scholar
Digital Library
- Harry Bateman. 1915. Some Recent Researches on the Motion of Fluids. Mon. Weath. R. 43, 4 (1915), 163--170.Google Scholar
Cross Ref
- Mikl'os Bergou, Basile Audoly, Etienne Vouga, Max Wardetzky, and Eitan Grinspun. 2010. Discrete Viscous Threads. ACM Trans. Graph. 29, 4 (2010), 116:1--10. Google Scholar
Digital Library
- Peter S. Bernard. 2006. Turbulent Flow Properties of Large-scale Vortex Systems. PNAS 103, 27 (2006), 10174--10179.Google Scholar
Cross Ref
- Peter S. Bernard. 2009. Vortex Filament Simulation of the Turbulent Coflowing Jet. Phys. Fluids 21, 2 (2009).Google Scholar
- Danielis Bernoulli. 1738. Hydrodynamica, sive de viribus et motibus fluidorum commentarii. Argentorati. For a modern account see also {Grattan-Guinness 2005} and {Darrigol and Frisch 2008}.Google Scholar
- Jean-Baptiste Biot and Nicolas-Pierre-Antoine Savart. 1820. Note sur le Magnétisme de la pile de Volta. Annal. Chimie et Phys. 15 (1820), 222--223.Google Scholar
- Tyson Brochu, Todd Keeler, and Robert Bridson. 2012. Linear-Time Smoke Animation with Vortex Sheet Meshes. In Proc. Symp. Comp. Anim. Eurographics Assoc., 87--95. Google Scholar
Digital Library
- J. M. Burgers. 1948. A Mathematical Model Illustrating the Theory of Turbulence. Adv. Appl. Math. 1 (1948), 171--199.Google Scholar
- Augustin-Louis Cauchy. 1815. Théorie de la Propagation des Ondes a la Surface d'un Fluide Pesant d'une Profondeur Indéfinie. In Oeuvres Complètes d'Augustin Cauchy. Vol. 1. Imprimerie Royale. Presented to the French Academy in 1815 (publ. 1827).Google Scholar
- Ching Chang and Stefan G. Llewellyn Smith. 2018. The Motion of a Buoyant Vortex Filament. J. Fl. Mech. 857 (2018), R1:1--13.Google Scholar
Cross Ref
- M. Cheng, J. Lou, and T. T. Lim. 2013. Motion of a Bubble Ring in a Viscous Fluid. Phys. Fluids 25, 6 (2013), 067104:1--19.Google Scholar
- Stephen Childress. 2009. An Introduction to Theoretical Fluid Dynamics. AMS.Google Scholar
- Alexandre Joel Chorin. 1990. Hairpin Removal in Vortex Interactions. J. Comput. Phys. 91, 1 (1990), 1--21. Google Scholar
Digital Library
- Alexandre Joel Chorin. 1993. Hairpin Removal in Vortex Interactions II. J. Comput. Phys. 107, 1 (1993), 1--9. Google Scholar
Digital Library
- Fang Da, Christopher Batty, Chris Wojtan, and Eitan Grinspun. 2015. Double Bubbles Sands Toil and Trouble: Discrete Circulation-Preserving Vortex Sheets for Soap Films and Foams. ACM Trans. Graph. 34, 4 (2015), 149:1--9. Google Scholar
Digital Library
- Fang Da, David Hahn, Christopher Batty, Chris Wojtan, and Eitan Grinspun. 2016. Surface-Only Liquids. ACM Trans. Graph. 35, 4 (2016), 78:1--12. Google Scholar
Digital Library
- O. Darrigol and U. Frisch. 2008. From Newton's Mechanics to Euler's Equations. Phy. D: Nonl. Phenom. 237, 14--17 (2008), 1855--1869.Google Scholar
- Uriel Frisch and Barbara Villone. 2014. Cauchy's almost Forgotten Lagrangian Formulation of the Euler Equation for 3D Incompressible Flow. Eu. Phy. J. H 39, 3 (2014), 325--351.Google Scholar
Cross Ref
- Sylvestre Gallot, Dominique Hulin, and Jacques Lafontaine. 2004. Riemannian Geometry (3<sup>rd</sup> ed.). Springer.Google Scholar
- S. K. Godunov. 1959. A Difference Method for Numerical Calculation of Discontinuous Solutions of the Equations of Hydrodynamics. Mat. Sb. (N.S.) 47(89), 3 (1959), 271--306.Google Scholar
- Ivor Grattan-Guinness (Ed.). 2005. Landmark Writings in Western Mathematics 1640--1940. Elsevier, Chapter Daniel Bernoulli: Hydrodynamica (G. K. Mikhailov), 131--142.Google Scholar
- Ernst Hairer, Syvert Paul Nørsett, and Gerhard Wanner. 1993. Solving Ordinary Differential Equations I: Nonstiff Problems (2nd ed.). Springer. Google Scholar
Digital Library
- Anton Izosimov and Boris Khesin. 2018. Vortex Sheets and Diffeomorphism Groupoids. Adv. Math. 338 (2018), 447--501.Google Scholar
Cross Ref
- Theodor Kaluza. 1921. Zum Unitätsproblem der Physik. Sitzungsber. Preuss. Akad. Wiss. Berlin (1921), 966--972. English translation inGoogle Scholar
- Oskar Klein. 1926. Quantentheorie und Fünfdimensionale Relativitätstheorie. Z. für Phys. 37, 12 (1926), 895--906.Google Scholar
Cross Ref
- Eric Lauga and Thomas R. Powers. 2009. The Hydrodynamics of Swimming Microorganisms. Rep. Prog. Phys. 72 (2009), 096601:1--36.Google Scholar
- Randall J. LeVeque. 2002. Finite-Volume Methods for Hyperbolic Problems. Cam. U. P.Google Scholar
- Xiangyun Liao, Weixin Si, Zhiyong Yuan, Hanqiu Sun, Jing Qin, Qiong Wang, and Pheng-Ann Heng. 2018. Animating Wall-Bounded Turbulent Smoke via Filament-Mesh Particle-Particle Method. IEEE Trans. Vis. Comp. Graph. 24, 3 (2018), 1260--1273.Google Scholar
Cross Ref
- Christian Loeschke. 2012. On the Relaxation of a Variational Principle for the Motion of a Vortex Sheet in Perfect Fluid. Ph.D. Dissertation. Rhein. Fried.-Wilh.-Univ. Bonn.Google Scholar
- T. S. Lundgren and W. T. Ashurst. 1989. Area-Varying Waves on Curved Vortex Tuibes with Application to Vortex Breakdown. J. Fl. Mech. 200 (1989), 283--307.Google Scholar
Cross Ref
- T. S. Lundgren and N. N. Mansour. 1988. Oscillations of Drops in Zero Gravity with Weak Viscous Effects. J. Fl. Mech. 194 (1988), 479--510.Google Scholar
Cross Ref
- T. S. Lundgren and N. N. Mansour. 1991. Vortex Ring Bubbles. J. Fl. Mech. 224 (1991), 177--196.Google Scholar
Cross Ref
- Jerrold Marsden and Alan Weinstein. 1983. Coadjoint Orbits, Vortices and Clebsch Variables for Incompressible Fluids. Phy. D: Nonl. Phenom. 7, 1--3 (1983), 305--323.Google Scholar
- J. S. Marshall. 1991. A General Theory of Curved Vortices with Circular Cross-Section and Varialbe Core Area. J. Fl. Mech. 229 (1991), 311--338.Google Scholar
Cross Ref
- V. V. Meleshko, A. A. Gourjii, and T. S. Krasnopolskaya. 2012. Vortex Rings: History and State of the Art. J. Math. Sc. 187, 6 (2012), 772--808.Google Scholar
Cross Ref
- Derek William Moore and Philip Geoffrey Saffman. 1972. The Motion of a Vortex Filament with Axial Flow. Phil. Tr. R. Soc. Lond. A 272, 1226 (1972), 403--429.Google Scholar
- T. J. Pedley. 1968. The Toroidal Bubble. J. Fl. Mech. 32, 1 (1968), 97--112.Google Scholar
Cross Ref
- Tobias Pfaff, Nils Thuerey, and Markus Gross. 2012. Lagrangian Vortex Sheets for Animating Fluids. ACM Trans. Graph. 31, 4 (2012), 112:1--8. Google Scholar
Digital Library
- Bo Ren, Xu-Yun Yang, Ming C. Lin, Nils Thuerey, Matthias Teschner, and Chenfeng Li. 2018. Visual Simulation of Multiple Fluids in Computer Graphics: A State-of-the-Art Report. J. Comp. Sc. Tech. 33, 3 (2018), 431--451.Google Scholar
- William B. Rogers. 1858. On the Formation of Rotating Rings by Air and Liquids under certain Conditions of Discharge. Am. J. Sc. A. 26, 77 (1858), 246--258.Google Scholar
- Louis Rosenhead and Harold Jeffreys. 1930. The Spread of Vorticity in the Wake behind a Cylinder. Proc. R. Soc. Lond. A 127, 806 (1930), 590--612.Google Scholar
Cross Ref
- P. G. Saffman. 1992. Vortex Dynamics. Cam. U. P.Google Scholar
- Karim Shariff and Anthony Leonard. 1992. Vortex Rings. Ann. Rev. Fl. Mech. 24 (1992), 235--279.Google Scholar
Cross Ref
- Michiko Shimokawa, Ryosei Mayumi, Taiki Nakamura, Toshiya Takami, and Hidetsugu Sakaguchi. 2016. Breakup and Deformation of a Droplet Falling in a Miscible Solution. Phys. R. E 93, 6 (2016), 062214:1--9.Google Scholar
- Mark J. Stock, Werner J. A. Dahm, and Grétar Tryggvason. 2008. Impact of a Vortex Ring on a Density Interface using a Regularized Inviscid Vortex Sheet Method. J. Comput. Phys. 227, 21 (2008), 9021--9043. See also images at http://markjstock.com/#/chaoticescape/. Google Scholar
Digital Library
- G. I. Taylor. 1953. Formation of a Vortex Ring by Giving an Impulse to a Circular Disk and then Dissolving it Away. J. Appl. Ph. 24, 1 (1953), 104--105.Google Scholar
Cross Ref
- J. J. Thomson. 1883. A Treatise on the Motion of Vortex Rings. Macmillan, London.Google Scholar
- J. J. Thomson and H. F. Newall. 1886. On the Formation of Vortex Rings by Drops falling into Liquids, and some allied Phenomena. Proc. R. Soc. Lond. 39, 239--241 (1886), 417--436.Google Scholar
- Charles Tomlinson. 1864. LXV. On a New Vareity of the Cohesion-Figures of Liquids. Lon. Edin. Dub. Phil. M. J. Sc. 27, 184 (1864), 425--432.Google Scholar
- J. S. Turner. 1957. Buoyant Vortex Rings. Proc. R. Soc. Lond. A 239, 1216 (1957), 61--75.Google Scholar
- Hermann von Helmholtz. 1858. Über Integrale der hydrodynamischen Gleichungen, welche den Wirbelbewegungen entsprechen. J. Reine Angew. Math. 55 (1858), 25--55.Google Scholar
Cross Ref
- Steffen Weißmann and Ulrich Pinkall. 2010. Filament-based Smoke with Vortex Shedding and Variational Reconnection. ACM Trans. Graph. 29, 4 (2010), 115:1--12. Google Scholar
Digital Library
- G. B. Whitham. 1974. Linear and Nonlinear Waves. Wiley.Google Scholar
- Sheila E. Widnall and Donald B. Bliss. 1971. Slender-body Analysis of the Motion and Stability of a Vortex Filament Containing an Axial Flow. J. Fl. Mech. 50, 2 (1971), 335--353.Google Scholar
Cross Ref
Index Terms
On bubble rings and ink chandeliers
Recommendations
Smoke rings from smoke
We give an algorithm which extracts vortex filaments ("smoke rings") from a given 3D velocity field. Given a filament strength h > 0, an optimal number of vortex filaments, together with their extent and placement, is given by the zero set of a complex ...
Filament-based smoke with vortex shedding and variational reconnection
SIGGRAPH '10: ACM SIGGRAPH 2010 papersSimulating fluids based on vortex filaments is highly attractive for the creation of special effects because it gives artists full control over the simulation using familiar tools like curve editors or the scripted generation of new vortex filaments ...
Simulation of swirling bubbly water using bubble particles
The effect of surface tension is dynamically and realistically represented within a multiphase fluid simulation. Air bubbles are seeded with ‘bubble particles’ which move randomly. These molecule-like movements modify the surface of the air bubbles and ...





Comments