skip to main content
research-article

On bubble rings and ink chandeliers

Published:12 July 2019Publication History
Skip Abstract Section

Abstract

We introduce variable thickness, viscous vortex filaments. These can model such varied phenomena as underwater bubble rings or the intricate "chandeliers" formed by ink dropping into fluid. Treating the evolution of such filaments as an instance of Newtonian dynamics on a Riemannian configuration manifold we are able to extend classical work in the dynamics of vortex filaments through inclusion of viscous drag forces. The latter must be accounted for in low Reynolds number flows where they lead to significant variations in filament thickness and form an essential part of the observed dynamics. We develop and document both the underlying theory and associated practical numerical algorithms.

Skip Supplemental Material Section

Supplemental Material

papers_225.mp4

References

  1. Alexis Angelidis and Fabrice Neyret. 2005. Simulation of Smoke based on Vortex Filament Primitives. In Proc. Symp. Comp. Anim. ACM, 87--96. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Vladimir I. Arnold and Boris A. Khesin. 1998. Topological Methods in Hydrodynamics. Springer. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Harry Bateman. 1915. Some Recent Researches on the Motion of Fluids. Mon. Weath. R. 43, 4 (1915), 163--170.Google ScholarGoogle ScholarCross RefCross Ref
  4. Mikl'os Bergou, Basile Audoly, Etienne Vouga, Max Wardetzky, and Eitan Grinspun. 2010. Discrete Viscous Threads. ACM Trans. Graph. 29, 4 (2010), 116:1--10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Peter S. Bernard. 2006. Turbulent Flow Properties of Large-scale Vortex Systems. PNAS 103, 27 (2006), 10174--10179.Google ScholarGoogle ScholarCross RefCross Ref
  6. Peter S. Bernard. 2009. Vortex Filament Simulation of the Turbulent Coflowing Jet. Phys. Fluids 21, 2 (2009).Google ScholarGoogle Scholar
  7. Danielis Bernoulli. 1738. Hydrodynamica, sive de viribus et motibus fluidorum commentarii. Argentorati. For a modern account see also {Grattan-Guinness 2005} and {Darrigol and Frisch 2008}.Google ScholarGoogle Scholar
  8. Jean-Baptiste Biot and Nicolas-Pierre-Antoine Savart. 1820. Note sur le Magnétisme de la pile de Volta. Annal. Chimie et Phys. 15 (1820), 222--223.Google ScholarGoogle Scholar
  9. Tyson Brochu, Todd Keeler, and Robert Bridson. 2012. Linear-Time Smoke Animation with Vortex Sheet Meshes. In Proc. Symp. Comp. Anim. Eurographics Assoc., 87--95. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. J. M. Burgers. 1948. A Mathematical Model Illustrating the Theory of Turbulence. Adv. Appl. Math. 1 (1948), 171--199.Google ScholarGoogle Scholar
  11. Augustin-Louis Cauchy. 1815. Théorie de la Propagation des Ondes a la Surface d'un Fluide Pesant d'une Profondeur Indéfinie. In Oeuvres Complètes d'Augustin Cauchy. Vol. 1. Imprimerie Royale. Presented to the French Academy in 1815 (publ. 1827).Google ScholarGoogle Scholar
  12. Ching Chang and Stefan G. Llewellyn Smith. 2018. The Motion of a Buoyant Vortex Filament. J. Fl. Mech. 857 (2018), R1:1--13.Google ScholarGoogle ScholarCross RefCross Ref
  13. M. Cheng, J. Lou, and T. T. Lim. 2013. Motion of a Bubble Ring in a Viscous Fluid. Phys. Fluids 25, 6 (2013), 067104:1--19.Google ScholarGoogle Scholar
  14. Stephen Childress. 2009. An Introduction to Theoretical Fluid Dynamics. AMS.Google ScholarGoogle Scholar
  15. Alexandre Joel Chorin. 1990. Hairpin Removal in Vortex Interactions. J. Comput. Phys. 91, 1 (1990), 1--21. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Alexandre Joel Chorin. 1993. Hairpin Removal in Vortex Interactions II. J. Comput. Phys. 107, 1 (1993), 1--9. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Fang Da, Christopher Batty, Chris Wojtan, and Eitan Grinspun. 2015. Double Bubbles Sands Toil and Trouble: Discrete Circulation-Preserving Vortex Sheets for Soap Films and Foams. ACM Trans. Graph. 34, 4 (2015), 149:1--9. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Fang Da, David Hahn, Christopher Batty, Chris Wojtan, and Eitan Grinspun. 2016. Surface-Only Liquids. ACM Trans. Graph. 35, 4 (2016), 78:1--12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. O. Darrigol and U. Frisch. 2008. From Newton's Mechanics to Euler's Equations. Phy. D: Nonl. Phenom. 237, 14--17 (2008), 1855--1869.Google ScholarGoogle Scholar
  20. Uriel Frisch and Barbara Villone. 2014. Cauchy's almost Forgotten Lagrangian Formulation of the Euler Equation for 3D Incompressible Flow. Eu. Phy. J. H 39, 3 (2014), 325--351.Google ScholarGoogle ScholarCross RefCross Ref
  21. Sylvestre Gallot, Dominique Hulin, and Jacques Lafontaine. 2004. Riemannian Geometry (3<sup>rd</sup> ed.). Springer.Google ScholarGoogle Scholar
  22. S. K. Godunov. 1959. A Difference Method for Numerical Calculation of Discontinuous Solutions of the Equations of Hydrodynamics. Mat. Sb. (N.S.) 47(89), 3 (1959), 271--306.Google ScholarGoogle Scholar
  23. Ivor Grattan-Guinness (Ed.). 2005. Landmark Writings in Western Mathematics 1640--1940. Elsevier, Chapter Daniel Bernoulli: Hydrodynamica (G. K. Mikhailov), 131--142.Google ScholarGoogle Scholar
  24. Ernst Hairer, Syvert Paul Nørsett, and Gerhard Wanner. 1993. Solving Ordinary Differential Equations I: Nonstiff Problems (2nd ed.). Springer. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Anton Izosimov and Boris Khesin. 2018. Vortex Sheets and Diffeomorphism Groupoids. Adv. Math. 338 (2018), 447--501.Google ScholarGoogle ScholarCross RefCross Ref
  26. Theodor Kaluza. 1921. Zum Unitätsproblem der Physik. Sitzungsber. Preuss. Akad. Wiss. Berlin (1921), 966--972. English translation inGoogle ScholarGoogle Scholar
  27. Oskar Klein. 1926. Quantentheorie und Fünfdimensionale Relativitätstheorie. Z. für Phys. 37, 12 (1926), 895--906.Google ScholarGoogle ScholarCross RefCross Ref
  28. Eric Lauga and Thomas R. Powers. 2009. The Hydrodynamics of Swimming Microorganisms. Rep. Prog. Phys. 72 (2009), 096601:1--36.Google ScholarGoogle Scholar
  29. Randall J. LeVeque. 2002. Finite-Volume Methods for Hyperbolic Problems. Cam. U. P.Google ScholarGoogle Scholar
  30. Xiangyun Liao, Weixin Si, Zhiyong Yuan, Hanqiu Sun, Jing Qin, Qiong Wang, and Pheng-Ann Heng. 2018. Animating Wall-Bounded Turbulent Smoke via Filament-Mesh Particle-Particle Method. IEEE Trans. Vis. Comp. Graph. 24, 3 (2018), 1260--1273.Google ScholarGoogle ScholarCross RefCross Ref
  31. Christian Loeschke. 2012. On the Relaxation of a Variational Principle for the Motion of a Vortex Sheet in Perfect Fluid. Ph.D. Dissertation. Rhein. Fried.-Wilh.-Univ. Bonn.Google ScholarGoogle Scholar
  32. T. S. Lundgren and W. T. Ashurst. 1989. Area-Varying Waves on Curved Vortex Tuibes with Application to Vortex Breakdown. J. Fl. Mech. 200 (1989), 283--307.Google ScholarGoogle ScholarCross RefCross Ref
  33. T. S. Lundgren and N. N. Mansour. 1988. Oscillations of Drops in Zero Gravity with Weak Viscous Effects. J. Fl. Mech. 194 (1988), 479--510.Google ScholarGoogle ScholarCross RefCross Ref
  34. T. S. Lundgren and N. N. Mansour. 1991. Vortex Ring Bubbles. J. Fl. Mech. 224 (1991), 177--196.Google ScholarGoogle ScholarCross RefCross Ref
  35. Jerrold Marsden and Alan Weinstein. 1983. Coadjoint Orbits, Vortices and Clebsch Variables for Incompressible Fluids. Phy. D: Nonl. Phenom. 7, 1--3 (1983), 305--323.Google ScholarGoogle Scholar
  36. J. S. Marshall. 1991. A General Theory of Curved Vortices with Circular Cross-Section and Varialbe Core Area. J. Fl. Mech. 229 (1991), 311--338.Google ScholarGoogle ScholarCross RefCross Ref
  37. V. V. Meleshko, A. A. Gourjii, and T. S. Krasnopolskaya. 2012. Vortex Rings: History and State of the Art. J. Math. Sc. 187, 6 (2012), 772--808.Google ScholarGoogle ScholarCross RefCross Ref
  38. Derek William Moore and Philip Geoffrey Saffman. 1972. The Motion of a Vortex Filament with Axial Flow. Phil. Tr. R. Soc. Lond. A 272, 1226 (1972), 403--429.Google ScholarGoogle Scholar
  39. T. J. Pedley. 1968. The Toroidal Bubble. J. Fl. Mech. 32, 1 (1968), 97--112.Google ScholarGoogle ScholarCross RefCross Ref
  40. Tobias Pfaff, Nils Thuerey, and Markus Gross. 2012. Lagrangian Vortex Sheets for Animating Fluids. ACM Trans. Graph. 31, 4 (2012), 112:1--8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. Bo Ren, Xu-Yun Yang, Ming C. Lin, Nils Thuerey, Matthias Teschner, and Chenfeng Li. 2018. Visual Simulation of Multiple Fluids in Computer Graphics: A State-of-the-Art Report. J. Comp. Sc. Tech. 33, 3 (2018), 431--451.Google ScholarGoogle Scholar
  42. William B. Rogers. 1858. On the Formation of Rotating Rings by Air and Liquids under certain Conditions of Discharge. Am. J. Sc. A. 26, 77 (1858), 246--258.Google ScholarGoogle Scholar
  43. Louis Rosenhead and Harold Jeffreys. 1930. The Spread of Vorticity in the Wake behind a Cylinder. Proc. R. Soc. Lond. A 127, 806 (1930), 590--612.Google ScholarGoogle ScholarCross RefCross Ref
  44. P. G. Saffman. 1992. Vortex Dynamics. Cam. U. P.Google ScholarGoogle Scholar
  45. Karim Shariff and Anthony Leonard. 1992. Vortex Rings. Ann. Rev. Fl. Mech. 24 (1992), 235--279.Google ScholarGoogle ScholarCross RefCross Ref
  46. Michiko Shimokawa, Ryosei Mayumi, Taiki Nakamura, Toshiya Takami, and Hidetsugu Sakaguchi. 2016. Breakup and Deformation of a Droplet Falling in a Miscible Solution. Phys. R. E 93, 6 (2016), 062214:1--9.Google ScholarGoogle Scholar
  47. Mark J. Stock, Werner J. A. Dahm, and Grétar Tryggvason. 2008. Impact of a Vortex Ring on a Density Interface using a Regularized Inviscid Vortex Sheet Method. J. Comput. Phys. 227, 21 (2008), 9021--9043. See also images at http://markjstock.com/#/chaoticescape/. Google ScholarGoogle ScholarDigital LibraryDigital Library
  48. G. I. Taylor. 1953. Formation of a Vortex Ring by Giving an Impulse to a Circular Disk and then Dissolving it Away. J. Appl. Ph. 24, 1 (1953), 104--105.Google ScholarGoogle ScholarCross RefCross Ref
  49. J. J. Thomson. 1883. A Treatise on the Motion of Vortex Rings. Macmillan, London.Google ScholarGoogle Scholar
  50. J. J. Thomson and H. F. Newall. 1886. On the Formation of Vortex Rings by Drops falling into Liquids, and some allied Phenomena. Proc. R. Soc. Lond. 39, 239--241 (1886), 417--436.Google ScholarGoogle Scholar
  51. Charles Tomlinson. 1864. LXV. On a New Vareity of the Cohesion-Figures of Liquids. Lon. Edin. Dub. Phil. M. J. Sc. 27, 184 (1864), 425--432.Google ScholarGoogle Scholar
  52. J. S. Turner. 1957. Buoyant Vortex Rings. Proc. R. Soc. Lond. A 239, 1216 (1957), 61--75.Google ScholarGoogle Scholar
  53. Hermann von Helmholtz. 1858. Über Integrale der hydrodynamischen Gleichungen, welche den Wirbelbewegungen entsprechen. J. Reine Angew. Math. 55 (1858), 25--55.Google ScholarGoogle ScholarCross RefCross Ref
  54. Steffen Weißmann and Ulrich Pinkall. 2010. Filament-based Smoke with Vortex Shedding and Variational Reconnection. ACM Trans. Graph. 29, 4 (2010), 115:1--12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  55. G. B. Whitham. 1974. Linear and Nonlinear Waves. Wiley.Google ScholarGoogle Scholar
  56. Sheila E. Widnall and Donald B. Bliss. 1971. Slender-body Analysis of the Motion and Stability of a Vortex Filament Containing an Axial Flow. J. Fl. Mech. 50, 2 (1971), 335--353.Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. On bubble rings and ink chandeliers

              Recommendations

              Comments

              Login options

              Check if you have access through your login credentials or your institution to get full access on this article.

              Sign in

              Full Access

              • Published in

                cover image ACM Transactions on Graphics
                ACM Transactions on Graphics  Volume 38, Issue 4
                August 2019
                1480 pages
                ISSN:0730-0301
                EISSN:1557-7368
                DOI:10.1145/3306346
                Issue’s Table of Contents

                Copyright © 2019 ACM

                Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

                Publisher

                Association for Computing Machinery

                New York, NY, United States

                Publication History

                • Published: 12 July 2019
                Published in tog Volume 38, Issue 4

                Permissions

                Request permissions about this article.

                Request Permissions

                Check for updates

                Qualifiers

                • research-article

              PDF Format

              View or Download as a PDF file.

              PDF

              eReader

              View online with eReader.

              eReader