skip to main content
research-article
Public Access

Silly rubber: an implicit material point method for simulating non-equilibrated viscoelastic and elastoplastic solids

Published:12 July 2019Publication History
Skip Abstract Section

Abstract

Simulating viscoelastic polymers and polymeric fluids requires a robust and accurate capture of elasticity and viscosity. The computation is known to become very challenging under large deformations and high viscosity. Drawing inspirations from return mapping based elastoplasticity treatment for granular materials, we present a finite strain integration scheme for general viscoelastic solids under arbitrarily large deformation and non-equilibrated flow. Our scheme is based on a predictor-corrector exponential mapping scheme on the principal strains from the deformation gradient, which closely resembles the conventional treatment for elastoplasticity and allows straightforward implementation into any existing constitutive models. We develop a new Material Point Method that is fully implicit on both elasticity and inelasticity using augmented Lagrangian optimization with various preconditioning strategies for highly efficient time integration. Our method not only handles viscoelasticity but also supports existing elastoplastic models including Drucker-Prager and von-Mises in a unified manner. We demonstrate the efficacy of our framework on various examples showing intricate and characteristic inelastic dynamics with competitive performance.

Skip Supplemental Material Section

Supplemental Material

a118-fang.mp4
papers_241.mp4

References

  1. A. Bargteil, C. Wojtan, J. Hodgins, and G. Turk. 2007. A finite element method for animating large viscoplastic flow. ACM Trans Graph 26, 3 (2007). Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. H. Barreiro, I. García-Fernández, I. Alduán, and M. Otaduy. 2017. Conformation constraints for efficient viscoelastic fluid simulation. ACM Trans Graph 36, 6 (2017). Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. C. Batty, F. Bertails, and R. Bridson. 2007. A fast variational framework for accurate solid-fluid coupling. ACM Trans Graph 26, 3 (2007). Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. C. Batty and R. Bridson. 2008. Accurate viscous free surfaces for buckling, coiling, and rotating liquids. Proc ACM SIGGRAPH/Eurograph Symp Comp Anim (2008), 219--228. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. C. Batty and B. Houston. 2011. A simple finite volume method for adaptive viscous liquids. In Symp on Comp Anim. 111--118. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. C. Batty, A. Uribe, B. Audoly, and E. Grinspun. 2012. Discrete viscous sheets. ACM Trans Graph 31, 4 (2012), 113. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. J. Bonet and R. Wood. 2008. Nonlinear continuum mechanics for finite element analysis.Google ScholarGoogle Scholar
  8. S. Bouaziz, S. Martin, T. Liu, L. Kavan, and M. Pauly. 2014. Projective dynamics: fusing constraint projections for fast simulation. ACM Trans Graph 33, 4 (2014), 154. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. S. Boyd, N. Parikh, E. Chu, B. Peleato, J. Eckstein, et al. 2011. Distributed optimization and statistical learning via the alternating direction method of multipliers. Foundations and Trends® in Machine learning 3, 1 (2011), 1--122. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. G. Brown, M. Overby, Z. Forootaninia, and R. Narain. 2018. Accurate dissipative forces in optimization integrators. In SIGGRAPH Asia 2018 Papers. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. M. Carlson, P. Mucha, R.B. Van Horn, and G. Turk. 2002. Melting and Flowing. In Proc of the 2002 ACM SIGGRAPH/EuroGraph Symp on Comp Anim (SCA '02). 167--174. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. N. Chentanez, M. Müller, and M. Macklin. 2016. Real-time simulation of large elastoplastic deformation with shape matching. In Symp on Comp Anim. 159--167. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. G. Daviet and F. Bertails-Descoubes. 2016. A semi-implicit material point method for the continuum simulation of granular materials. ACM Trans Graph 35, 4 (2016), 102:1--102:13. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. D. Dinev, T. Liu, and L. Kavan. 2018a. Stabilizing Integrators for Real-Time Physics. ACM Trans. Graph. (2018). Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. D. Dinev, T. Liu, J. Li, B. Thomaszewski, and L. Kavan. 2018b. FEPR: Fast Energy Projection for Real-time Simulation of Deformable Objects. ACM Trans. Graph. 37, 4 (July 2018), 79:1--79:12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. J. Eckstein. 1994. Parallel alternating direction multiplier decomposition of convex programs. J of Optimization Theory and Applications 80, 1 (1994), 39--62. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Y. Fang, Y. Hu, S. Hu, and C. Jiang. 2018. A temporally adaptive material point method with regional time stepping. In Comp Graph forum, Vol. 37. 195--204.Google ScholarGoogle Scholar
  18. Y. Fang, M. Li, M. Gao, and C. Jiang. 2019. Silly Rubber: supplemental document. (2019).Google ScholarGoogle Scholar
  19. Y. Fei, C. Batty, E. Grinspun, and C. Zheng. 2018. A Multi-scale Model for Simulating Liquid-fabric Interactions. ACM Trans. Graph. 37, 4 (Aug. 2018), 51:1--51:16. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. M. Fortin and A. Fortin. 1989. A new approach for the FEM simulation of viscoelastic flows. J of non-newtonian fluid Mech 32, 3 (1989), 295--310.Google ScholarGoogle Scholar
  21. M. Fortin and R. Glowinski. 1983. Chapter III on decomposition-coordination methods using an augmented lagrangian. In Studies in Math and Its Appl. Vol. 15. 97--146.Google ScholarGoogle Scholar
  22. M. Gao, A. Pradhana, X. Han, Q. Guo, G. Kot, E. Sifakis, and C. Jiang. 2018a. Animating fluid sediment mixture in particle-laden flows. ACM Trans Graph 37, 4 (2018), 149. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. M. Gao, A. Pradhana, C. Jiang, and E. Sifakis. 2017. An adaptive generalized interpolation material point method for simulating elastoplastic materials. ACM Trans Graph 36, 6 (2017), 223. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. M. Gao, X. Wang, K. Wu, A. Pradhana, E. Sifakis, C. Yuksel, and C. Jiang. 2018b. GPU Optimization of Material Point Methods. ACM Trans Graph (2018), 254:1--254:12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. T. Gast, C. Schroeder, A. Stomakhin, C. Jiang, and J. Teran. 2015. Optimization Integrator for Large Time Steps. IEEE Trans Vis Comp Graph 21, 10 (2015), 1103--1115. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. J. Gaume, T. Gast, J. Teran, A. van Herwijnen, and C. Jiang. 2018. Dynamic anticrack propagation in snow. Nature Comm 9, 1 (2018), 3047.Google ScholarGoogle ScholarCross RefCross Ref
  27. D. Gerszewski, H. Bhattacharya, and A. Bargteil. 2009. A point-based method for animating elastoplastic solids. In Symp on Comp Anim. 133--138. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. T. Goktekin, A. Bargteil, and J. O'Brien. 2004. A method for animating viscoelastic fluids. ACM Trans Graph 23, 3 (2004), 463--468. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. T. Goldstein, B. O'Donoghue, S. Setzer, and R. Baraniuk. 2014. Fast alternating direction optimization methods. SIAM J on Imag Scis 7, 3 (2014), 1588--1623.Google ScholarGoogle ScholarCross RefCross Ref
  30. S. Govindjee and S. Reese. 1997. A presentation and comparison of two large deformation viscoelasticity models. J of Eng Mat and technology 119, 3 (1997), 251--255.Google ScholarGoogle Scholar
  31. Q. Guo, X. Han, C. Fu, T. Gast, R. Tamstorf, and J. Teran. 2018. A material point method for thin shells with frictional contact. ACM Trans Graph 37, 4 (2018), 147. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. X. He, H. Wang, and E. Wu. 2018. Projective peridynamics for modeling versatile elastoplastic materials. IEEE Trans Vis and Comp Graph 24, 9 (2018), 2589--2599.Google ScholarGoogle ScholarCross RefCross Ref
  33. G.T. Houlsby and A.M. Puzrin. 2007. Principles of hyperplasticity: an approach to plasticity theory based on thermodynamic principles.Google ScholarGoogle Scholar
  34. Y. Hu, Y. Fang, Z. Ge, Z. Qu, Y. Zhu, A. Pradhana, and C. Jiang. 2018. A moving least squares material point method with displacement discontinuity and two-way rigid body coupling. ACM Trans Graph 37, 4 (2018), 150. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. G. Irving, J. Teran, and R. Fedkiw. 2004. Invertible finite elements for robust simulation of large deformation. In Proc ACM SIGGRAPH/Eurograph Symp Comp Anim. 131--140. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. C. Jiang, T. Gast, and J. Teran. 2017. Anisotropic elastoplasticity for cloth, knit and hair frictional contact. ACM Trans Graph 36, 4 (2017). Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. C. Jiang, C. Schroeder, A. Selle, J. Teran, and A. Stomakhin. 2015. The affine particle-in-cell method. ACM Trans Graph 34, 4 (2015), 51:1--51:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. H. Johnston and J. Liu. 2004. Accurate, stable and efficient Navier-Stokes solvers based on explicit treatment of the pressure term. J of Comp Phys 199, 1 (2004), 221--259. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. B. Jones, S. Ward, A. Jallepalli, J. Perenia, and A. Bargteil. 2014. Deformation embedding for point-based elastoplastic simulation. ACM Trans Graph 33, 2 (2014), 21. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. G. Klár, T. Gast, A. Pradhana, C. Fu, C. Schroeder, C. Jiang, and J. Teran. 2016. Drucker-prager elastoplasticity for sand animation. ACM Trans Graph 35, 4 (2016). Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. E. Larionov, C. Batty, and R. Bridson. 2017. Variational stokes: a unified pressure-viscosity solver for accurate viscous liquids. ACM Trans Graph 36, 4 (2017), 101. Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. Patrick Le Tallec. 1990. Numerical analysis of viscoelastic problems. Vol. 15.Google ScholarGoogle Scholar
  43. J. Li, T. Liu, and L. Kavan. 2018. Laplacian Damping for Projective Dynamics. In VRIPHYS2018: 14th Workshop on Virtual Reality Interaction and Physical Sim. Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. T. Liu, A. Bargteil, J. O'Brien, and L. Kavan. 2013. Fast Simulation of Mass-Spring Systems. ACM Trans Graph 32, 6 (2013), 209:1--7. Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. T. Liu, S. Bouaziz, and L. Kavan. 2017. Quasi-newton methods for real-time simulation of hyperelastic materials. ACM Trans Graph 36, 4 (2017), 116a.Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. F. Losasso, T. Shinar, A. Selle, and R. Fedkiw. 2006. Multiple Interacting Liquids. In ACM SIGGRAPH 2006 Papers (SIGGRAPH '06). 812--819. Google ScholarGoogle ScholarDigital LibraryDigital Library
  47. A. Mielke. 2006. A mathematical framework for generalized standard materials in the rate-independent case. In Multifield Problems in Solid and Fluid Mech. 399--428.Google ScholarGoogle Scholar
  48. K. Museth, J. Lait, J. Johanson, J. Budsberg, R. Henderson, M. Alden, P. Cucka, D. Hill, and A. Pearce. 2013. OpenVDB: an open-source data structure and toolkit for high-resolution volumes. In siggraph 2013 courses. Google ScholarGoogle ScholarDigital LibraryDigital Library
  49. R. Narain, A. Golas, and M. Lin. 2010. Free-flowing granular materials with two-way solid coupling. ACM Trans Graph 29, 6 (2010), 173:1--173:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  50. B Nedjar. 2002a. Frameworks for finite strain viscoelastic-plasticity based on multiplicative decompositions. Part I: Continuum formulations. Comp Meth in App Mech and Eng 191, 15--16 (2002), 1541--1562.Google ScholarGoogle Scholar
  51. B Nedjar. 2002b. Frameworks for finite strain viscoelastic-plasticity based on multiplicative decompositions. Part II: Computational aspects. Comp Meth in App Mech and Eng 191, 15--16 (2002), 1563--1593.Google ScholarGoogle Scholar
  52. Y. Nesterov et al. 2007. Gradient methods for minimizing composite objective function.Google ScholarGoogle Scholar
  53. Michael Ortiz and Laurent Stainier. 1999. The variational formulation of viscoplastic constitutive updates. Comp Meth in App Mech and Eng 171, 3--4 (1999), 419--444.Google ScholarGoogle ScholarCross RefCross Ref
  54. M. Overby, G. Brown, J. Li, and R. Narain. 2017. ADMM ⊇ Projective Dynamics: Fast Simulation of Hyperelastic Models with Dynamic Constraints. IEEE Trans. Vis. Comput. Graph. 23, 10 (Oct. 2017), 2222--2234.Google ScholarGoogle ScholarDigital LibraryDigital Library
  55. Y. Peng, B. Deng, J. Zhang, F. Geng, W. Qin, and L. Liu. 2018. Anderson Acceleration for Geometry Optimization and Physics Simulation. arXiv (2018).Google ScholarGoogle Scholar
  56. A. Pradhana, T. Gast, G. Klár, C. Fu, J. Teran, C. Jiang, and K. Museth. 2017. Multi-species simulation of porous sand and water mixtures. ACM Trans Graph 36, 4 (2017). Google ScholarGoogle ScholarDigital LibraryDigital Library
  57. D. Ram, T. Gast, C. Jiang, C. Schroeder, A. Stomakhin, J. Teran, and P. Kavehpour. 2015. A material point method for viscoelastic fluids, foams and sponges. In Proc ACM SIGGRAPH/Eurograph Symp Comp Anim. 157--163. Google ScholarGoogle ScholarDigital LibraryDigital Library
  58. N. Rasmussen, D. Enright, D. Nguyen, S. Marino, N. Sumner, W. Geiger, S. Hoon, and R. Fedkiw. 2004. Directable photorealistic liquids. In Proc of the 2004 ACM SIGGRAPH/EuroGraph Symp on Comp Anim. 193--202. Google ScholarGoogle ScholarDigital LibraryDigital Library
  59. S. Reese and S. Govindjee. 1998. A theory of finite viscoelasticity and numerical aspects. Int J of solids and structures 35, 26--27 (1998), 3455--3482.Google ScholarGoogle Scholar
  60. E. Sifakis and J. Barbič. 2015. Finite Element Method Simulation of 3D Deformable Solids. SIGGRAPH Course 1, 1 (2015), 1--69.Google ScholarGoogle Scholar
  61. J. C. Simo. 1992. Algorithms for static and dynamic multiplicative plasticity that preserve the classical return mapping schemes of the infinitesimal theory. Comp Meth App Mech Eng 99, 1 (1992), 61--112. Google ScholarGoogle ScholarDigital LibraryDigital Library
  62. Juan C Simo and Thomas JR Hughes. 2006. Computational inelasticity. Vol. 7.Google ScholarGoogle Scholar
  63. B. Stellato, G. Banjac, P. Goulart, A. Bemporad, and S. Boyd. 2018. OSQP: An Operator Splitting Solver for Quadratic Programs. In Int Conf on Control. 339--339.Google ScholarGoogle Scholar
  64. A. Stomakhin, C. Schroeder, L. Chai, J. Teran, and A. Selle. 2013. A material point method for snow simulation. ACM Trans Graph 32, 4 (2013), 102:1--102:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  65. A. Stomakhin, C. Schroeder, C. Jiang, L. Chai, J. Teran, and A. Selle. 2014. Augmented MPM for phase-change and varied materials. ACM Trans Graph 33, 4 (2014), 138. Google ScholarGoogle ScholarDigital LibraryDigital Library
  66. D. Sulsky, S. Zhou, and H. Schreyer. 1995. Application of a particle-in-cell method to solid mechanics. Comp Phys Comm 87, 1 (1995), 236--252.Google ScholarGoogle ScholarCross RefCross Ref
  67. T. Takahashi, Y. Dobashi, I. Fujishiro, T. Nishita, and M. Lin. 2015. Implicit formulation for SPH-based viscous fluids. In Comp Graph Forum, Vol. 34. 493--502. Google ScholarGoogle ScholarDigital LibraryDigital Library
  68. T. Takahashi, T. Nishita, and I. Fujishiro. 2014. Fast simulation of viscous fluids with elasticity and thermal conductivity using position-based dynamics. Comps Graph 43 (2014), 21--30.Google ScholarGoogle ScholarCross RefCross Ref
  69. J. Teran, E. Sifakis, G. Irving, and R. Fedkiw. 2005. Robust quasistatic finite elements and flesh simulation. In Symp on Comp Anim. 181--190. Google ScholarGoogle ScholarDigital LibraryDigital Library
  70. D. Terzopoulos and K. Fleischer. 1988. Modeling inelastic deformation: viscolelasticity, plasticity, fracture. In ACM Siggraph Comp Graph, Vol. 22. 269--278. Google ScholarGoogle ScholarDigital LibraryDigital Library
  71. D. Terzopoulos, J. Platt, A. Barr, and K. Fleischer. 1987. Elastically deformable models. ACM Siggraph Comp Graph 21, 4 (1987), 205--214. Google ScholarGoogle ScholarDigital LibraryDigital Library
  72. H.F. Walker and P. Ni. 2011. Anderson acceleration for fixed-point iterations. SIAM J on Numer Analysis 49, 4 (2011), 1715--1735. Google ScholarGoogle ScholarDigital LibraryDigital Library
  73. H. Wang and Y. Yang. 2016. Descent methods for elastic body simulation on the GPU. ACM Trans Graph 35, 6 (2016), 212. Google ScholarGoogle ScholarDigital LibraryDigital Library
  74. M. Wicke, D. Ritchie, B. Klingner, S. Burke, J. Shewchuk, and J. O'Brien. 2010. Dynamic local remeshing for elastoplastic simulation. ACM Trans Graph 29, 4 (2010), 49:1--11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  75. B. Wohlberg. 2017. ADMM Penalty Parameter Selection by Residual Balancing. (2017).Google ScholarGoogle Scholar
  76. Chris Wojtan, Nils Thürey, Markus Gross, and Greg Turk. 2009. Deforming meshes that split and merge. In ACM Trans Graph, Vol. 28. 76. Google ScholarGoogle ScholarDigital LibraryDigital Library
  77. C. Wojtan and G. Turk. 2008. Fast viscoelastic behavior with thin features. ACM Trans Graph 27, 3 (2008), 47. Google ScholarGoogle ScholarDigital LibraryDigital Library
  78. J. Wretborn, R. Armiento, and K. Museth. 2017. Animation of Crack Propagation by Means of an Extended Multi-body Solver for the Material Point Method. Comput. Graph. 69, C (Dec. 2017), 131--139. Google ScholarGoogle ScholarDigital LibraryDigital Library
  79. X. Yan, C. Li, X. Chen, and S. Hu. 2018. MPM simulation of interacting fluids and solids. Comp Graph Forum 37, 8 (2018), 183--193.Google ScholarGoogle ScholarCross RefCross Ref
  80. Y. Yue, B. Smith, C. Batty, C. Zheng, and E. Grinspun. 2015. Continuum foam: a material point method for shear-dependent flows. ACM Trans Graph 34, 5 (2015), 160:1--160:20. Google ScholarGoogle ScholarDigital LibraryDigital Library
  81. Y. Yue, B. Smith, P. Chen, M. Chantharayukhonthorn, K. Kamrin, and E. Grinspun. 2018. Hybrid Grains: Adaptive Coupling of Discrete and Continuum Simulations of Granular Media. ACM Trans Graph (2018), 283:1--283:19. Google ScholarGoogle ScholarDigital LibraryDigital Library
  82. B. Zhu, M. Lee, E. Quigley, and R. Fedkiw. 2015. Codimensional non-Newtonian fluids. ACM Trans Graph 34, 4 (2015), 115. Google ScholarGoogle ScholarDigital LibraryDigital Library
  83. Y. Zhu and R. Bridson. 2005. Animating sand as a fluid. ACM Trans Graph 24, 3 (2005), 965--972. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Silly rubber: an implicit material point method for simulating non-equilibrated viscoelastic and elastoplastic solids

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in

    Full Access

    • Published in

      cover image ACM Transactions on Graphics
      ACM Transactions on Graphics  Volume 38, Issue 4
      August 2019
      1480 pages
      ISSN:0730-0301
      EISSN:1557-7368
      DOI:10.1145/3306346
      Issue’s Table of Contents

      Copyright © 2019 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 12 July 2019
      Published in tog Volume 38, Issue 4

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader