Abstract
Simulating viscoelastic polymers and polymeric fluids requires a robust and accurate capture of elasticity and viscosity. The computation is known to become very challenging under large deformations and high viscosity. Drawing inspirations from return mapping based elastoplasticity treatment for granular materials, we present a finite strain integration scheme for general viscoelastic solids under arbitrarily large deformation and non-equilibrated flow. Our scheme is based on a predictor-corrector exponential mapping scheme on the principal strains from the deformation gradient, which closely resembles the conventional treatment for elastoplasticity and allows straightforward implementation into any existing constitutive models. We develop a new Material Point Method that is fully implicit on both elasticity and inelasticity using augmented Lagrangian optimization with various preconditioning strategies for highly efficient time integration. Our method not only handles viscoelasticity but also supports existing elastoplastic models including Drucker-Prager and von-Mises in a unified manner. We demonstrate the efficacy of our framework on various examples showing intricate and characteristic inelastic dynamics with competitive performance.
Supplemental Material
- A. Bargteil, C. Wojtan, J. Hodgins, and G. Turk. 2007. A finite element method for animating large viscoplastic flow. ACM Trans Graph 26, 3 (2007). Google Scholar
Digital Library
- H. Barreiro, I. García-Fernández, I. Alduán, and M. Otaduy. 2017. Conformation constraints for efficient viscoelastic fluid simulation. ACM Trans Graph 36, 6 (2017). Google Scholar
Digital Library
- C. Batty, F. Bertails, and R. Bridson. 2007. A fast variational framework for accurate solid-fluid coupling. ACM Trans Graph 26, 3 (2007). Google Scholar
Digital Library
- C. Batty and R. Bridson. 2008. Accurate viscous free surfaces for buckling, coiling, and rotating liquids. Proc ACM SIGGRAPH/Eurograph Symp Comp Anim (2008), 219--228. Google Scholar
Digital Library
- C. Batty and B. Houston. 2011. A simple finite volume method for adaptive viscous liquids. In Symp on Comp Anim. 111--118. Google Scholar
Digital Library
- C. Batty, A. Uribe, B. Audoly, and E. Grinspun. 2012. Discrete viscous sheets. ACM Trans Graph 31, 4 (2012), 113. Google Scholar
Digital Library
- J. Bonet and R. Wood. 2008. Nonlinear continuum mechanics for finite element analysis.Google Scholar
- S. Bouaziz, S. Martin, T. Liu, L. Kavan, and M. Pauly. 2014. Projective dynamics: fusing constraint projections for fast simulation. ACM Trans Graph 33, 4 (2014), 154. Google Scholar
Digital Library
- S. Boyd, N. Parikh, E. Chu, B. Peleato, J. Eckstein, et al. 2011. Distributed optimization and statistical learning via the alternating direction method of multipliers. Foundations and Trends® in Machine learning 3, 1 (2011), 1--122. Google Scholar
Digital Library
- G. Brown, M. Overby, Z. Forootaninia, and R. Narain. 2018. Accurate dissipative forces in optimization integrators. In SIGGRAPH Asia 2018 Papers. Google Scholar
Digital Library
- M. Carlson, P. Mucha, R.B. Van Horn, and G. Turk. 2002. Melting and Flowing. In Proc of the 2002 ACM SIGGRAPH/EuroGraph Symp on Comp Anim (SCA '02). 167--174. Google Scholar
Digital Library
- N. Chentanez, M. Müller, and M. Macklin. 2016. Real-time simulation of large elastoplastic deformation with shape matching. In Symp on Comp Anim. 159--167. Google Scholar
Digital Library
- G. Daviet and F. Bertails-Descoubes. 2016. A semi-implicit material point method for the continuum simulation of granular materials. ACM Trans Graph 35, 4 (2016), 102:1--102:13. Google Scholar
Digital Library
- D. Dinev, T. Liu, and L. Kavan. 2018a. Stabilizing Integrators for Real-Time Physics. ACM Trans. Graph. (2018). Google Scholar
Digital Library
- D. Dinev, T. Liu, J. Li, B. Thomaszewski, and L. Kavan. 2018b. FEPR: Fast Energy Projection for Real-time Simulation of Deformable Objects. ACM Trans. Graph. 37, 4 (July 2018), 79:1--79:12. Google Scholar
Digital Library
- J. Eckstein. 1994. Parallel alternating direction multiplier decomposition of convex programs. J of Optimization Theory and Applications 80, 1 (1994), 39--62. Google Scholar
Digital Library
- Y. Fang, Y. Hu, S. Hu, and C. Jiang. 2018. A temporally adaptive material point method with regional time stepping. In Comp Graph forum, Vol. 37. 195--204.Google Scholar
- Y. Fang, M. Li, M. Gao, and C. Jiang. 2019. Silly Rubber: supplemental document. (2019).Google Scholar
- Y. Fei, C. Batty, E. Grinspun, and C. Zheng. 2018. A Multi-scale Model for Simulating Liquid-fabric Interactions. ACM Trans. Graph. 37, 4 (Aug. 2018), 51:1--51:16. Google Scholar
Digital Library
- M. Fortin and A. Fortin. 1989. A new approach for the FEM simulation of viscoelastic flows. J of non-newtonian fluid Mech 32, 3 (1989), 295--310.Google Scholar
- M. Fortin and R. Glowinski. 1983. Chapter III on decomposition-coordination methods using an augmented lagrangian. In Studies in Math and Its Appl. Vol. 15. 97--146.Google Scholar
- M. Gao, A. Pradhana, X. Han, Q. Guo, G. Kot, E. Sifakis, and C. Jiang. 2018a. Animating fluid sediment mixture in particle-laden flows. ACM Trans Graph 37, 4 (2018), 149. Google Scholar
Digital Library
- M. Gao, A. Pradhana, C. Jiang, and E. Sifakis. 2017. An adaptive generalized interpolation material point method for simulating elastoplastic materials. ACM Trans Graph 36, 6 (2017), 223. Google Scholar
Digital Library
- M. Gao, X. Wang, K. Wu, A. Pradhana, E. Sifakis, C. Yuksel, and C. Jiang. 2018b. GPU Optimization of Material Point Methods. ACM Trans Graph (2018), 254:1--254:12. Google Scholar
Digital Library
- T. Gast, C. Schroeder, A. Stomakhin, C. Jiang, and J. Teran. 2015. Optimization Integrator for Large Time Steps. IEEE Trans Vis Comp Graph 21, 10 (2015), 1103--1115. Google Scholar
Digital Library
- J. Gaume, T. Gast, J. Teran, A. van Herwijnen, and C. Jiang. 2018. Dynamic anticrack propagation in snow. Nature Comm 9, 1 (2018), 3047.Google Scholar
Cross Ref
- D. Gerszewski, H. Bhattacharya, and A. Bargteil. 2009. A point-based method for animating elastoplastic solids. In Symp on Comp Anim. 133--138. Google Scholar
Digital Library
- T. Goktekin, A. Bargteil, and J. O'Brien. 2004. A method for animating viscoelastic fluids. ACM Trans Graph 23, 3 (2004), 463--468. Google Scholar
Digital Library
- T. Goldstein, B. O'Donoghue, S. Setzer, and R. Baraniuk. 2014. Fast alternating direction optimization methods. SIAM J on Imag Scis 7, 3 (2014), 1588--1623.Google Scholar
Cross Ref
- S. Govindjee and S. Reese. 1997. A presentation and comparison of two large deformation viscoelasticity models. J of Eng Mat and technology 119, 3 (1997), 251--255.Google Scholar
- Q. Guo, X. Han, C. Fu, T. Gast, R. Tamstorf, and J. Teran. 2018. A material point method for thin shells with frictional contact. ACM Trans Graph 37, 4 (2018), 147. Google Scholar
Digital Library
- X. He, H. Wang, and E. Wu. 2018. Projective peridynamics for modeling versatile elastoplastic materials. IEEE Trans Vis and Comp Graph 24, 9 (2018), 2589--2599.Google Scholar
Cross Ref
- G.T. Houlsby and A.M. Puzrin. 2007. Principles of hyperplasticity: an approach to plasticity theory based on thermodynamic principles.Google Scholar
- Y. Hu, Y. Fang, Z. Ge, Z. Qu, Y. Zhu, A. Pradhana, and C. Jiang. 2018. A moving least squares material point method with displacement discontinuity and two-way rigid body coupling. ACM Trans Graph 37, 4 (2018), 150. Google Scholar
Digital Library
- G. Irving, J. Teran, and R. Fedkiw. 2004. Invertible finite elements for robust simulation of large deformation. In Proc ACM SIGGRAPH/Eurograph Symp Comp Anim. 131--140. Google Scholar
Digital Library
- C. Jiang, T. Gast, and J. Teran. 2017. Anisotropic elastoplasticity for cloth, knit and hair frictional contact. ACM Trans Graph 36, 4 (2017). Google Scholar
Digital Library
- C. Jiang, C. Schroeder, A. Selle, J. Teran, and A. Stomakhin. 2015. The affine particle-in-cell method. ACM Trans Graph 34, 4 (2015), 51:1--51:10. Google Scholar
Digital Library
- H. Johnston and J. Liu. 2004. Accurate, stable and efficient Navier-Stokes solvers based on explicit treatment of the pressure term. J of Comp Phys 199, 1 (2004), 221--259. Google Scholar
Digital Library
- B. Jones, S. Ward, A. Jallepalli, J. Perenia, and A. Bargteil. 2014. Deformation embedding for point-based elastoplastic simulation. ACM Trans Graph 33, 2 (2014), 21. Google Scholar
Digital Library
- G. Klár, T. Gast, A. Pradhana, C. Fu, C. Schroeder, C. Jiang, and J. Teran. 2016. Drucker-prager elastoplasticity for sand animation. ACM Trans Graph 35, 4 (2016). Google Scholar
Digital Library
- E. Larionov, C. Batty, and R. Bridson. 2017. Variational stokes: a unified pressure-viscosity solver for accurate viscous liquids. ACM Trans Graph 36, 4 (2017), 101. Google Scholar
Digital Library
- Patrick Le Tallec. 1990. Numerical analysis of viscoelastic problems. Vol. 15.Google Scholar
- J. Li, T. Liu, and L. Kavan. 2018. Laplacian Damping for Projective Dynamics. In VRIPHYS2018: 14th Workshop on Virtual Reality Interaction and Physical Sim. Google Scholar
Digital Library
- T. Liu, A. Bargteil, J. O'Brien, and L. Kavan. 2013. Fast Simulation of Mass-Spring Systems. ACM Trans Graph 32, 6 (2013), 209:1--7. Google Scholar
Digital Library
- T. Liu, S. Bouaziz, and L. Kavan. 2017. Quasi-newton methods for real-time simulation of hyperelastic materials. ACM Trans Graph 36, 4 (2017), 116a.Google Scholar
Digital Library
- F. Losasso, T. Shinar, A. Selle, and R. Fedkiw. 2006. Multiple Interacting Liquids. In ACM SIGGRAPH 2006 Papers (SIGGRAPH '06). 812--819. Google Scholar
Digital Library
- A. Mielke. 2006. A mathematical framework for generalized standard materials in the rate-independent case. In Multifield Problems in Solid and Fluid Mech. 399--428.Google Scholar
- K. Museth, J. Lait, J. Johanson, J. Budsberg, R. Henderson, M. Alden, P. Cucka, D. Hill, and A. Pearce. 2013. OpenVDB: an open-source data structure and toolkit for high-resolution volumes. In siggraph 2013 courses. Google Scholar
Digital Library
- R. Narain, A. Golas, and M. Lin. 2010. Free-flowing granular materials with two-way solid coupling. ACM Trans Graph 29, 6 (2010), 173:1--173:10. Google Scholar
Digital Library
- B Nedjar. 2002a. Frameworks for finite strain viscoelastic-plasticity based on multiplicative decompositions. Part I: Continuum formulations. Comp Meth in App Mech and Eng 191, 15--16 (2002), 1541--1562.Google Scholar
- B Nedjar. 2002b. Frameworks for finite strain viscoelastic-plasticity based on multiplicative decompositions. Part II: Computational aspects. Comp Meth in App Mech and Eng 191, 15--16 (2002), 1563--1593.Google Scholar
- Y. Nesterov et al. 2007. Gradient methods for minimizing composite objective function.Google Scholar
- Michael Ortiz and Laurent Stainier. 1999. The variational formulation of viscoplastic constitutive updates. Comp Meth in App Mech and Eng 171, 3--4 (1999), 419--444.Google Scholar
Cross Ref
- M. Overby, G. Brown, J. Li, and R. Narain. 2017. ADMM ⊇ Projective Dynamics: Fast Simulation of Hyperelastic Models with Dynamic Constraints. IEEE Trans. Vis. Comput. Graph. 23, 10 (Oct. 2017), 2222--2234.Google Scholar
Digital Library
- Y. Peng, B. Deng, J. Zhang, F. Geng, W. Qin, and L. Liu. 2018. Anderson Acceleration for Geometry Optimization and Physics Simulation. arXiv (2018).Google Scholar
- A. Pradhana, T. Gast, G. Klár, C. Fu, J. Teran, C. Jiang, and K. Museth. 2017. Multi-species simulation of porous sand and water mixtures. ACM Trans Graph 36, 4 (2017). Google Scholar
Digital Library
- D. Ram, T. Gast, C. Jiang, C. Schroeder, A. Stomakhin, J. Teran, and P. Kavehpour. 2015. A material point method for viscoelastic fluids, foams and sponges. In Proc ACM SIGGRAPH/Eurograph Symp Comp Anim. 157--163. Google Scholar
Digital Library
- N. Rasmussen, D. Enright, D. Nguyen, S. Marino, N. Sumner, W. Geiger, S. Hoon, and R. Fedkiw. 2004. Directable photorealistic liquids. In Proc of the 2004 ACM SIGGRAPH/EuroGraph Symp on Comp Anim. 193--202. Google Scholar
Digital Library
- S. Reese and S. Govindjee. 1998. A theory of finite viscoelasticity and numerical aspects. Int J of solids and structures 35, 26--27 (1998), 3455--3482.Google Scholar
- E. Sifakis and J. Barbič. 2015. Finite Element Method Simulation of 3D Deformable Solids. SIGGRAPH Course 1, 1 (2015), 1--69.Google Scholar
- J. C. Simo. 1992. Algorithms for static and dynamic multiplicative plasticity that preserve the classical return mapping schemes of the infinitesimal theory. Comp Meth App Mech Eng 99, 1 (1992), 61--112. Google Scholar
Digital Library
- Juan C Simo and Thomas JR Hughes. 2006. Computational inelasticity. Vol. 7.Google Scholar
- B. Stellato, G. Banjac, P. Goulart, A. Bemporad, and S. Boyd. 2018. OSQP: An Operator Splitting Solver for Quadratic Programs. In Int Conf on Control. 339--339.Google Scholar
- A. Stomakhin, C. Schroeder, L. Chai, J. Teran, and A. Selle. 2013. A material point method for snow simulation. ACM Trans Graph 32, 4 (2013), 102:1--102:10. Google Scholar
Digital Library
- A. Stomakhin, C. Schroeder, C. Jiang, L. Chai, J. Teran, and A. Selle. 2014. Augmented MPM for phase-change and varied materials. ACM Trans Graph 33, 4 (2014), 138. Google Scholar
Digital Library
- D. Sulsky, S. Zhou, and H. Schreyer. 1995. Application of a particle-in-cell method to solid mechanics. Comp Phys Comm 87, 1 (1995), 236--252.Google Scholar
Cross Ref
- T. Takahashi, Y. Dobashi, I. Fujishiro, T. Nishita, and M. Lin. 2015. Implicit formulation for SPH-based viscous fluids. In Comp Graph Forum, Vol. 34. 493--502. Google Scholar
Digital Library
- T. Takahashi, T. Nishita, and I. Fujishiro. 2014. Fast simulation of viscous fluids with elasticity and thermal conductivity using position-based dynamics. Comps Graph 43 (2014), 21--30.Google Scholar
Cross Ref
- J. Teran, E. Sifakis, G. Irving, and R. Fedkiw. 2005. Robust quasistatic finite elements and flesh simulation. In Symp on Comp Anim. 181--190. Google Scholar
Digital Library
- D. Terzopoulos and K. Fleischer. 1988. Modeling inelastic deformation: viscolelasticity, plasticity, fracture. In ACM Siggraph Comp Graph, Vol. 22. 269--278. Google Scholar
Digital Library
- D. Terzopoulos, J. Platt, A. Barr, and K. Fleischer. 1987. Elastically deformable models. ACM Siggraph Comp Graph 21, 4 (1987), 205--214. Google Scholar
Digital Library
- H.F. Walker and P. Ni. 2011. Anderson acceleration for fixed-point iterations. SIAM J on Numer Analysis 49, 4 (2011), 1715--1735. Google Scholar
Digital Library
- H. Wang and Y. Yang. 2016. Descent methods for elastic body simulation on the GPU. ACM Trans Graph 35, 6 (2016), 212. Google Scholar
Digital Library
- M. Wicke, D. Ritchie, B. Klingner, S. Burke, J. Shewchuk, and J. O'Brien. 2010. Dynamic local remeshing for elastoplastic simulation. ACM Trans Graph 29, 4 (2010), 49:1--11. Google Scholar
Digital Library
- B. Wohlberg. 2017. ADMM Penalty Parameter Selection by Residual Balancing. (2017).Google Scholar
- Chris Wojtan, Nils Thürey, Markus Gross, and Greg Turk. 2009. Deforming meshes that split and merge. In ACM Trans Graph, Vol. 28. 76. Google Scholar
Digital Library
- C. Wojtan and G. Turk. 2008. Fast viscoelastic behavior with thin features. ACM Trans Graph 27, 3 (2008), 47. Google Scholar
Digital Library
- J. Wretborn, R. Armiento, and K. Museth. 2017. Animation of Crack Propagation by Means of an Extended Multi-body Solver for the Material Point Method. Comput. Graph. 69, C (Dec. 2017), 131--139. Google Scholar
Digital Library
- X. Yan, C. Li, X. Chen, and S. Hu. 2018. MPM simulation of interacting fluids and solids. Comp Graph Forum 37, 8 (2018), 183--193.Google Scholar
Cross Ref
- Y. Yue, B. Smith, C. Batty, C. Zheng, and E. Grinspun. 2015. Continuum foam: a material point method for shear-dependent flows. ACM Trans Graph 34, 5 (2015), 160:1--160:20. Google Scholar
Digital Library
- Y. Yue, B. Smith, P. Chen, M. Chantharayukhonthorn, K. Kamrin, and E. Grinspun. 2018. Hybrid Grains: Adaptive Coupling of Discrete and Continuum Simulations of Granular Media. ACM Trans Graph (2018), 283:1--283:19. Google Scholar
Digital Library
- B. Zhu, M. Lee, E. Quigley, and R. Fedkiw. 2015. Codimensional non-Newtonian fluids. ACM Trans Graph 34, 4 (2015), 115. Google Scholar
Digital Library
- Y. Zhu and R. Bridson. 2005. Animating sand as a fluid. ACM Trans Graph 24, 3 (2005), 965--972. Google Scholar
Digital Library
Index Terms
Silly rubber: an implicit material point method for simulating non-equilibrated viscoelastic and elastoplastic solids
Recommendations
Finite element simulation of the hysteretic behaviour of an industrial rubber. Application to design of rubber components
The paper aims to show the capability of the overlay model, originally proposed by Austrell, for the prediction of the hysteretic behaviour in industrial applications (design of rubber components). The methodology presented aims to be of applicability ...
Mechanical characterization of wood
Highlights Holistic approach to material modeling, including a multitude of length scales. Microscale strength properties as basis for macroscopic plasticity parameter. Link between microscale creep mechanisms to macroscopic creep compliances. Wood is ...
Geometrically nonlinear analysis of elastoplastic behavior of functionally graded shells
A geometrically nonlinear analysis of elastoplastic ceramic/metal functionally graded material (FGM) shells is investigated in this paper based on the first-order shear deformation theory. The elastoplastic behavior of the ceramic particle-reinforced ...





Comments