skip to main content
research-article
Open Access

On the accurate large-scale simulation of ferrofluids

Published:12 July 2019Publication History
Skip Abstract Section

Abstract

We present an approach to the accurate and efficient large-scale simulation of the complex dynamics of ferrofluids based on physical principles. Ferrofluids are liquids containing magnetic particles that react to an external magnetic field without solidifying. In this contribution, we employ smooth magnets to simulate ferrofluids in contrast to previous methods based on the finite element method or point magnets. We solve the magnetization using the analytical solution of the smooth magnets' field, and derive the bounded magnetic force formulas addressing particle penetration. We integrate the magnetic field and force evaluations into the fast multipole method allowing for efficient large-scale simulations of ferrofluids. The presented simulations are well reproducible since our approach can be easily incorporated into a framework implementing a Fast Multipole Method and a Smoothed Particle Hydrodynamics fluid solver with surface tension. We provide a detailed analysis of our approach and validate our results against real wet lab experiments. This work can potentially open the door for a deeper understanding of ferrofluids and for the identification of new areas of applications of these materials.

Skip Supplemental Material Section

Supplemental Material

papers_257.mp4

References

  1. Stefan Adami, Xiangyu Hu, and Nikolaus A. Adams. 2012. A generalized wall boundary condition for smoothed particle hydrodynamics. J. Comput. Phys. 231, 21 (2012), 7057--7075. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Nadir Akinci, Gizem Akinci, and Matthias Teschner. 2013. Versatile surface tension and adhesion for SPH fluids. ACM Trans. Graph. 32, 6, Article 182 (Nov. 2013), 8 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Nadir Akinci, Markus Ihmsen, Gizem Akinci, Barbara Solenthaler, and Matthias Teschner. 2012. Versatile Rigid-fluid Coupling for Incompressible SPH. ACM Trans. Graph. 31, 4, Article 62 (July 2012), 8 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Matteo Antuono, Andrea Colagrossi, and Salvatore Marrone. 2012. Numerical diffusive terms in weakly-compressible SPH schemes. Computer Physics Communications 183 (Dec. 2012), 2570--2580.Google ScholarGoogle Scholar
  5. Stefan Band, Christoph Gissler, Markus Ihmsen, Jens Cornelis, Andreas Peer, and Matthias Teschner. 2018a. Pressure boundaries for implicit incompressible SPH. ACM Transactions on Graphics (TOG) 37, 2 (2018), 14. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Stefan Band, Christoph Gissler, Andreas Peer, and Matthias Teschner. 2018b. MLS pressure boundaries for divergence-free and viscous SPH fluids. Computers & Graphics 76 (2018), 37--46.Google ScholarGoogle Scholar
  7. Rick Beatson and Leslie Greengard. 1997. A short course on fast multipole methods. In Wavelets, Multilevel Methods and Elliptic PDEs. Oxford University Press, 1--37.Google ScholarGoogle Scholar
  8. Ted Belytschko, Yury Krongauz, D. Organ, Mark Fleming, and Petr Krysl. 1996. Meshless methods: An overview and recent developments. Computer Methods in Applied Mechanics and Engineering 139, 1 (1996), 3 -- 47.Google ScholarGoogle ScholarCross RefCross Ref
  9. Jan Bender and Dan Koschier. 2017. Divergence-free SPH for incompressible and viscous fluids. IEEE Transactions on Visualization and Computer Graphics 23, 3 (March 2017), 1193--1206. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Denis Brousseau, Ermanno F. Borra, and Simon Thibault. 2007. Wavefront correction with a 37-actuator ferrofluid deformable mirror. Opt. Express 15, 26 (Dec 2007), 18190--18199.Google ScholarGoogle ScholarCross RefCross Ref
  11. James V. Byrne. 1977. Ferrofluid hydrostatics according to classical and recent theories of the stresses. Proceedings of the Institution of Electrical Engineers 124, 11 (November 1977), 1089--1097.Google ScholarGoogle ScholarCross RefCross Ref
  12. Yuan Cao and Ze J. Ding. 2014. Formation of hexagonal pattern of ferrofluid in magnetic field. Journal of Magnetism and Magnetic Materials 355 (2014), 93--99.Google ScholarGoogle ScholarCross RefCross Ref
  13. Cris Cecka and Simon Layton. 2015. FMMTL: FMM Template Library a generalized framework for kernel matrices. In Numerical Mathematics and Advanced Applications, ENUMATH 2013, Assyr Abdulle, Simone Deparis, Daniel Kressner, Fabio Nobile, and Marco Picasso (Eds.). Springer International Publishing, Cham, 611--620.Google ScholarGoogle Scholar
  14. Andreas Engel. 2001. Comment on "Invalidation of the Kelvin Force in Ferrofluids". Phys. Rev. Lett. 86 (May 2001), 4978--4978. Issue 21.Google ScholarGoogle ScholarCross RefCross Ref
  15. Chuyuan Fu, Qi Guo, Theodore Gast, Chenfanfu Jiang, and Joseph Teran. 2017. A polynomial particle-in-cell method. ACM Trans. Graph. 36, 6, Article 222 (Nov. 2017), 12 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Christian Gollwitzer, Gunar Matthies, Reinhard Richter, Ingo Rehberg, and Lutz Tobiska. 2007. The surface topography of a magnetic fluid: a quantitative comparison between experiment and numerical simulation. Journal of Fluid Mechanics 571 (2007), 455--474.Google ScholarGoogle ScholarCross RefCross Ref
  17. Herb Hartshorne, Christopher J Backhouse, and William E Lee. 2004. Ferrofluid-based microchip pump and valve. Sensors and Actuators B: Chemical 99, 2 (2004), 592 -- 600.Google ScholarGoogle ScholarCross RefCross Ref
  18. Xiaowei He, Ning Liu, Sheng Li, Hongan Wang, and Guoping Wang. 2012. Local Poisson SPH For Viscous Incompressible Fluids. Comput. Graph. Forum 31, 6 (Sept. 2012), 1948--1958. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Xiaowei He, Huamin Wang, Fengjun Zhang, Hongan Wang, Guoping Wang, and Kun Zhou. 2014. Robust simulation of sparsely sampled thin features in SPH-based free surface flows. ACM Trans. Graph. 34, 1, Article 7 (Dec. 2014), 9 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Yuanming Hu, Yu Fang, Ziheng Ge, Ziyin Qu, Yixin Zhu, Andre Pradhana, and Chenfanfu Jiang. 2018. A moving least squares material point method with displacement discontinuity and two-way rigid body coupling. ACM Trans. Graph. 37, 4, Article 150 (July 2018), 14 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Markus Ihmsen, Nadir Akinci, Markus Becker, and Matthias Teschner. 2011. A Parallel SPH Implementation on Multi-Core CPUs. Computer Graphics Forum 30, 1 (2011), 99--112.Google ScholarGoogle ScholarCross RefCross Ref
  22. Markus Ihmsen, Jens Cornelis, Barbara Solenthaler, Christopher Horvath, and Matthias Teschner. 2014a. Implicit incompressible SPH. IEEE Transactions on Visualization and Computer Graphics 20, 3 (March 2014), 426--435. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Markus Ihmsen, Jens Orthmann, Barbara Solenthaler, Andreas Kolb, and Matthias Teschner. 2014b. SPH Fluids in Computer Graphics. In Eurographics 2014 - State of the Art Reports, Sylvain Lefebvre and Michela Spagnuolo (Eds.). The Eurographics Association.Google ScholarGoogle Scholar
  24. Tomokazu Ishikawa, Yonghao Yue, Kei Iwasaki, Yoshinori Dobashi, and Tomoyuki Nishita. 2012. Visual simulation of magnetic fluid taking into account dynamic deformation in spikes. In Image Electronics and Visual Computing Workshop.Google ScholarGoogle Scholar
  25. Tomokazu Ishikawa, Yonghao Yue, Kei Iwasaki, Yoshinori Dobashi, and Tomoyuki Nishita. 2013. Visual simulation of magnetic fluid using a procedural approach for spikes shape. In Computer Vision, Imaging and Computer Graphics. Theory and Application, Gabriela Csurka, Martin Kraus, Robert S. Laramee, Paul Richard, and José Braz (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 112--126.Google ScholarGoogle Scholar
  26. Chenfanfu Jiang, Craig Schroeder, and Joseph Teran. 2017. An angular momentum conserving affine-particle-in-cell method. J. Comput. Phys. 338, C (June 2017), 137--164. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Seung-Wook Kim, Sun Young Park, and Junghyun Han. 2018. Magnetization dynamics for magnetic object interactions. ACM Trans. Graph. 37, 4, Article 121 (July 2018), 13 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Sachiko Kodama. 2008. Dynamic ferrofluid sculpture: organic shape-changing art forms. Commun. ACM 51, 6 (June 2008), 79--81. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Dan Koschier, Jan Bender, Barbara Solenthaler, and Matthias Teschner. 2019. EUROGRAPHICS Tutorial on Smoothed Particle Hydrodynamics Techniques for the Physics Based Simulation of Fluids and Solids. (2019).Google ScholarGoogle Scholar
  30. Olga Lavrova, Gunar Matthies, Teodora Mitkova, Viktor Polevikov, and Lutz Tobiska. 2006. Numerical treatment of free surface problems in ferrohydrodynamics. Journal of Physics: Condensed Matter 18, 38 (2006), S2657.Google ScholarGoogle ScholarCross RefCross Ref
  31. Olga Lavrova, Gunar Matthies, and Lutz Tobiska. 2008. Numerical study of solitonlike surface configurations on a magnetic fluid layer in the Rosensweig instability. Communications in Nonlinear Science and Numerical Simulation 13, 7 (2008), 1302--1310.Google ScholarGoogle ScholarCross RefCross Ref
  32. Marc Levoy, John Gerth, Brian Curless, and KariPulli. 2005. The Stanford 3D scanning repository. (2005).Google ScholarGoogle Scholar
  33. Steven Lind, Rui Xu, Peter K. Stansby, and Benedict D. Rogers. 2012. Incompressible Smoothed Particle Hydrodynamics for Free-surface Flows: A Generalised Diffusion-based Algorithm for Stability and Validations for Impulsive Flows and Propagating Waves. J. Comput. Phys. 231, 4 (Feb. 2012), 1499--1523. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Mario Liu. 2001. Liu replies. Phys. Rev. Lett. 86 (May 2001), 4979--4979. Issue 21.Google ScholarGoogle Scholar
  35. Kenta Mitsufuji, Shuhei Matsuzawa, Katsuhiro Hirata, and Fumikazu Miyasaka. 2016. Meshless method employing magnetic moment method and particle method for magnetic fluid motion analysis. IEEJ Journal of Industry Applications 5, 4 (2016), 355--359.Google ScholarGoogle ScholarCross RefCross Ref
  36. Masafumi Miwa, H. Harita, T. Nishigami, R. Kaneko, and H. Unozawa. 2003. Frequency characteristics of stiffness and damping effect of a ferrofluid bearing. Tribology Letters 15, 2 (01 Aug 2003), 97--105.Google ScholarGoogle ScholarCross RefCross Ref
  37. Joseph J. Monaghan. 1992. Smoothed particle hydrodynamics. Annual review of astronomy and astrophysics 30 (1992), 543--574.Google ScholarGoogle Scholar
  38. Joseph J. Monaghan. 2012. Smoothed Particle Hydrodynamics and Its Diverse Applications. Annual Review of Fluid Mechanics 44, 1 (2012), 323--346.Google ScholarGoogle ScholarCross RefCross Ref
  39. Matthias Müller, David Charypar, and Markus Gross. 2003. Particle-based fluid simulation for interactive applications. In Proceedings of the 2003 ACM SIGGRAPH/Eurographics Symposium on Computer Animation (SCA '03). Eurographics Association, Aire-la-Ville, Switzerland, Switzerland, 154--159. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Ricardo H. Nochetto, Abner J. Salgado, and Ignacio Tomas. 2016a. A diffuse interface model for two-phase ferrofluid flows. Computer Methods in Applied Mechanics and Engineering 309 (2016), 497--531.Google ScholarGoogle ScholarCross RefCross Ref
  41. Ricardo H. Nochetto, Abner J. Salgado, and Ignacio Tomas. 2016b. The equations of ferrohydrodynamics: modeling and numerical methods. Mathematical Models and Methods in Applied Sciences 26, 13 (2016), 2393--2449.Google ScholarGoogle ScholarCross RefCross Ref
  42. Stefan Odenbach. 2008. Ferrofluids: Magnetically Controllable Fluids and Their Applications. Vol. 594. Springer.Google ScholarGoogle Scholar
  43. Stefan Odenbach and Mario Liu. 2001. Invalidation of the kelvin force in ferrofluids. Phys. Rev. Lett. 86 (Jan 2001), 328--331. Issue 2.Google ScholarGoogle ScholarCross RefCross Ref
  44. Andreas Peer, Markus Ihmsen, Jens Cornelis, and Matthias Teschner. 2015. An implicit viscosity formulation for SPH fluids. ACM Transactions on Graphics (TOG) 34, 4 (2015), 114. Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. Andreas Peer and Matthias Teschner. 2017. Prescribed velocity gradients for highly viscous SPH fluids with vorticity diffusion. IEEE transactions on visualization and computer graphics 23, 12 (2017), 2656--2662.Google ScholarGoogle ScholarCross RefCross Ref
  46. Kuldip Raj, B. Moskowitz, and R. Casciari. 1995. Advances in ferrofluid technology. Journal of Magnetism and Magnetic Materials 149, 1 (1995), 174--180. Proceedings of the Seventh International Conference on Magnetic Fluids.Google ScholarGoogle ScholarCross RefCross Ref
  47. Ronald E. Rosensweig. 1987. Magnetic Fluids. 19 (01 1987), 437--463.Google ScholarGoogle Scholar
  48. Ronald E. Rosensweig. 1988. An Introduction To Ferrohydrodynamics. Chemical Engineering Communications 67, 1 (1988), 1--18.Google ScholarGoogle ScholarCross RefCross Ref
  49. Ronald E. Rosensweig. 1997. Ferrohydrodynamics. Dover Publications.Google ScholarGoogle Scholar
  50. Barbara Solenthaler and Renato Pajarola. 2009. Predictive-corrective incompressible SPH. ACM Trans. Graph. 28, 3, Article 40 (July 2009), 6 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  51. Pengnan Sun, Andrea Colagrossi, Salvatore Marrone, and A. M. Zhang. 2017. The Δplus-SPH model: Simple procedures for a further improvement of the SPH scheme. Computer Methods in Applied Mechanics and Engineering 315 (March 2017), 25--49.Google ScholarGoogle Scholar
  52. Alexandre Tartakovsky and Paul Meakin. 2005. Modeling of surface tension and contact angles with smoothed particle hydrodynamics. Phys. Rev. E 72 (Aug 2005), 026301. Issue 2.Google ScholarGoogle ScholarCross RefCross Ref
  53. Bernhard Thomaszewski, Andreas Gumann, Simon Pabst, and Wolfgang Straßer. 2008. Magnets in motion. ACM Trans. Graph. 27, 5, Article 162 (Dec. 2008), 9 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  54. Kalarickaparambil J. Vinoy and Rakesh M. Jha. 1996. Radar absorbing materials: from theory to design and characterization. Boston: Kluwer Academic Publishers.Google ScholarGoogle Scholar
  55. Tao Yang, Ralph R. Martin, Ming C. Lin, Jian Chang, and Shi-Min Hu. 2017. Pairwise force SPH model for real-time multi-interaction applications. IEEE Transactions on Visualization and Computer Graphics 23, 10 (Oct 2017), 2235--2247.Google ScholarGoogle ScholarDigital LibraryDigital Library
  56. Gaku Yoshikawa, Katsuhiro Hirata, Fumikazu Miyasaka, and Yu Okaue. 2010. Numerical analysis of transitional behavior of ferrofluid employing MPS method and FEM. In Digests of the 2010 14th Biennial IEEE Conference on Electromagnetic Field Computation. 1--1.Google ScholarGoogle ScholarCross RefCross Ref
  57. Markus Zahn. 2001. Magnetic fluid and nanoparticle applications to nanotechnology. Journal of Nanoparticle Research 3, 1 (Feb 2001), 73--78.Google ScholarGoogle ScholarCross RefCross Ref
  58. Wen Zheng, Bo Zhu, Byungmoon Kim, and Ronald Fedkiw. 2015. A new incompressibility discretization for a hybrid particle MAC grid representation with surface tension. J. Comput. Phys. 280, C (Jan. 2015), 96--142. Google ScholarGoogle ScholarDigital LibraryDigital Library
  59. Yongning Zhu and Robert Bridson. 2005. Animating sand as a fluid. ACM Trans. Graph. 24, 3 (July 2005), 965--972. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. On the accurate large-scale simulation of ferrofluids

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in

    Full Access

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader