skip to main content
research-article

KleinPAT: optimal mode conflation for time-domain precomputation of acoustic transfer

Published:12 July 2019Publication History
Skip Abstract Section

Abstract

We propose a new modal sound synthesis method that rapidly estimates all acoustic transfer fields of a linear modal vibration model, and greatly reduces preprocessing costs. Instead of performing a separate frequency-domain Helmholtz radiation analysis for each mode, our method partitions vibration modes into chords using optimal mode conflation, then performs a single time-domain wave simulation for each chord. We then perform transfer deconflation on each chord's time-domain radiation field using a specialized QR solver, and thereby extract the frequency-domain transfer functions of each mode. The precomputed transfer functions are represented for fast far-field evaluation, e.g., using multipole expansions. In this paper, we propose to use a single scalar-valued Far-field Acoustic Transfer (FFAT) cube map. We describe a GPU-accelerated vector wavesolver that achieves high-throughput acoustic transfer computation at accuracy sufficient for sound synthesis. Our implementation, KleinPAT, can achieve hundred- to thousand-fold speedups compared to existing Helmholtz-based transfer solvers, thereby enabling large-scale generation of modal sound models for audio-visual applications.

Skip Supplemental Material Section

Supplemental Material

a122-wang.mp4
papers_261.mp4

References

  1. T. Akenine-Möller. 2002. Fast 3D Triangle-box Overlap Testing. Journal of Graphics Tools 6, 1 (2002). Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. A. Allen and N. Raghuvanshi. 2015. Aerophones in Flatland: Interactive Wave Simulation of Wind Instruments. ACM Transactions on Graphics (Proceedings of SIGGRAPH 2015) 34, 4 (Aug. 2015). Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. M. Bebendorf. 2000. Approximation of boundary element matrices. Numerical Mathematics 86, 4 (01 Oct 2000), 565--589.Google ScholarGoogle Scholar
  4. Mario Bebendorf. 2008. Hierarchical Matrices - A Means to Efficiently Solve Elliptic Boundary Value Problems. In Lecture Notes in Computational Science and Engineering. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. M. Bebendorf and R. Kriemann. 2005. Fast parallel solution of boundary integral equations and related problems. Computing and Visualization in Science 8, 3 (01 Dec 2005), 121--135.Google ScholarGoogle Scholar
  6. S. Bilbao. 2009. Numerical Sound Synthesis: Finite Difference Schemes and Simulation in Musical Acoustics. John Wiley and Sons. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. S. Bilbao. 2011. Time domain simulation and sound synthesis for the snare drum. Journal of the Acoustical Society of America 131, 1 (2011).Google ScholarGoogle Scholar
  8. S. Bilbao. 2013. Modeling of Complex Geometries and Boundary Conditions in Finite Difference/Finite Volume Time Domain Room Acoustics Simulation. IEEE Transactions on Audio, Speech, and Language Processing 21, 7 (July 2013), 1524--1533. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. S. Bilbao and C. J. Webb. 2013. Physical modeling of timpani drums in 3D on GPGPUs. Journal of the Audio Engineering Society 61, 10 (2013), 737--748.Google ScholarGoogle Scholar
  10. N. Bonneel, G. Drettakis, N. Tsingos, I. Viaud-Delmon, and D. James. 2008. Fast Modal Sounds with Scalable Frequency-Domain Synthesis. ACM Transactions on Graphics 27, 3 (Aug. 2008), 24:1--24:9. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. D. Brunner, M. Junge, P. Rapp, M. Bebendorf, and L. Gaul. 2010. Comparison of the Fast Multipole Method with Hierarchical Matrices for the Helmholtz-BEM. Computer Modeling in Engineering & Sciences 58 (03 2010).Google ScholarGoogle Scholar
  12. J. N. Chadwick, S. S. An, and D. L. James. 2009. Harmonic Shells: A Practical Nonlinear Sound Model for Near-Rigid Thin Shells. ACM Transactions on Graphics (Aug. 2009). Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. J. N. Chadwick, C. Zheng, and D. L. James. 2012a. Faster Acceleration Noise for Multi-body Animations using Precomputed Soundbanks. ACM/Eurographics Symposium on Computer Animation (2012). Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. J. N. Chadwick, C. Zheng, and D. L. James. 2012b. Precomputed Acceleration Noise for Improved Rigid-Body Sound. ACM Transactions on Graphics (Proceedings of SIGGRAPH 2012) 31, 4 (Aug. 2012). Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. H. Cheng, W. Y. Crutchfield, Z. Gimbutas, L. F. Greengard, J F. Ethridge, J. Huang, V. Rokhlin, N. Yarvin, and J. Zhao. 2006. A wideband fast multipole method for the Helmholtz equation in three dimensions. J. Comput. Phys. 216, 1 (2006), 300--325. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. D. Ciscowski, R. and C. A Brebbia. 1991. Boundary Element methods in acoustics. Computational Mechanics Publications and Elsevier Applied Science, Southampton. UK.Google ScholarGoogle Scholar
  17. P. R. Cook. 2002. Sound Production and Modeling. IEEE Computer Graphics & Applications 22, 4 (July/Aug. 2002), 23--27. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. W. W. Gaver. 1993. Synthesizing auditory icons. In Proceedings of the INTERACT'93 and CHI'93 conference on Human factors in computing systems. ACM, 228--235. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Gene H. Golub and Charles F. Van Loan. 2013. Matrix Computations (4th ed.). The Johns Hopkins University Press.Google ScholarGoogle Scholar
  20. N. A. Gumerov and R. Duraiswami. 2005. Fast Multipole Methods for the Helmholtz Equation in Three Dimensions. Elsevier Science.Google ScholarGoogle Scholar
  21. R. W. Hamming. 1998. Digital filters. Courier Corporation.Google ScholarGoogle Scholar
  22. Doug James, Changxi Zheng, Timothy Langlois, and Ravish Mehra. 2016. Physically Based Sound for Computer Animation and Virtual Environments. In ACM SIGGRAPH 2016 Courses. ACM, 22. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. D. L. James, J. Barbic, and D. K. Pai. 2006. Precomputed Acoustic Transfer: Output-sensitive, accurate sound generation for geometrically complex vibration sources. ACM Transactions on Graphics 25, 3 (July 2006), 987--995. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. S. M. Kay. 1988. Modern Spectral Estimation: Theory and Application. Prentice Hall.Google ScholarGoogle Scholar
  25. D. Komatitsch, G. Erlebacher, D. Göddeke, and D. Michéa. 2010. High-order finite-element seismic wave propagation modeling with MPI on a large GPU cluster. Journal of computational physics 229, 20 (2010), 7692--7714. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. T. R. Langlois, S. S. An, K. K. Jin, and D. L. James. 2014. Eigenmode Compression for Modal Sound Models. ACM Transactions on Graphics (TOG) 33, 4, Article 40 (July 2014), 9 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. T. R. Langlois, C. Zheng, and D. L. James. 2016. Toward Animating Water with Complex Acoustic Bubbles. ACM Transactions on Graphics (TOG) 35, 4, Article 95 (July 2016), 13 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. D. Li, Y. Fei, and C. Zheng. 2015. Interactive Acoustic Transfer Approximation for Modal Sound. ACM Transactions on Graphics (TOG) 35, 1 (2015). Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Q.-H. Liu and J. Tao. 1997. The perfectly matched layer for acoustic waves in absorptive media. The Journal of the Acoustical Society of America 102, 4 (1997), 2072--2082.Google ScholarGoogle ScholarCross RefCross Ref
  30. Y. J. Liu. 2009. Fast Multipole Boundary Element Method: Theory and Applications in Engineering. Cambridge University Press, Cambridge.Google ScholarGoogle Scholar
  31. P. J. Looges and S. Olariu. 1992. Optimal greedy algorithms for indifference graphs. In Proceedings IEEE Southeastcon '92. 144--149 vol. 1.Google ScholarGoogle Scholar
  32. R. Mehra, N. Raghuvanshi, L. Savioja, M. C. Lin, and D. Manocha. 2012. An efficient GPU-based time domain solver for the acoustic wave equation. Applied Acoustics 73, 2 (2012), 83 -- 94.Google ScholarGoogle ScholarCross RefCross Ref
  33. A. Meshram, R. Mehra, H. Yang, E. Dunn, J.-M. Frahm, and D. Manochak. 2014. P-hrtf: Efficient personalized hrtf computation for high-fidelity spatial sound. Mixed and Augmented Reality (ISMAR), 2014 IEEE International Symposium on (2014).Google ScholarGoogle ScholarCross RefCross Ref
  34. P. Micikevicius. 2009. 3D Finite Difference Computation on GPUs Using CUDA. In Proceedings of 2Nd Workshop on General Purpose Processing on Graphics Processing Units (GPGPU-2). ACM, New York, NY, USA, 79--84. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. J. D. Morrison and J.-M. Adrien. 1993. Mosaic: A framework for modal synthesis. Computer Music Journal 17, 1 (1993), 45--56.Google ScholarGoogle ScholarCross RefCross Ref
  36. J. F. O'Brien, C. Shen, and C. M. Gatchalian. 2002. Synthesizing sounds from rigid-body simulations. In The ACM SIGGRAPH 2002 Symposium on Computer Animation. ACM Press, 175--181. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. D. K. Pai, K. van den Doel, D. L. James, J. Lang, J. E. Lloyd, J. L. Richmond, and S. H. Yau. 2001. Scanning physical interaction behavior of 3D objects. In Proceedings of the 28th annual conference on Computer graphics and interactive techniques. ACM, 87--96. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. S. Prepelita, M. Geronazzo, F. Avanzini, and L. Savioja. 2016. Influence of voxelization on finite difference time domain simulations of head-related transfer functions. The Journal of the Acoustical Society of America 139, 5 (2016), 2489--2504.Google ScholarGoogle ScholarCross RefCross Ref
  39. Z. Ren, H. Yeh, and M. C. Lin. 2013. Example-guided physically based modal sound synthesis. ACM Transactions on Graphics (TOG) 32, 1 (2013), 1. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Y. Saad and M. H. Schultz. 1986. GMRES: A Generalized Minimal Residual Algorithm for Solving Nonsymmetric Linear Systems. SIAM J. Sci. Statist. Comput. 7, 3 (July 1986), 856--869. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. X. Serra and J. Smith. 1990. Spectral modeling synthesis: A sound analysis/synthesis system based on a deterministic plus stochastic decomposition. Computer Music Journal 14, 4 (1990), 12--24.Google ScholarGoogle Scholar
  42. A. A. Shabana. 2012. Theory of Vibration: An Introduction. Springer Science & Business Media.Google ScholarGoogle Scholar
  43. A. A. Shabana. 2013. Dynamics of multibody systems. Cambridge university press.Google ScholarGoogle Scholar
  44. W. Śmigaj, T. Betcke, S. Arridge, J. Phillips, and M. Schweiger. 2015. Solving Boundary Integral Problems with BEM++. ACM Trans. Math. Software 41, 2, Article 6 (Feb. 2015), 40 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. A. Taflove and S. C. Hagness. 2005. Computational Electrodynamics: The Finite-Difference Time-Domain Method. Artech House.Google ScholarGoogle Scholar
  46. T. Takala and J. Hahn. 1992. Sound rendering. In ACM Transactions on Graphics (Proceedings of SIGGRAPH 1992). 211--220. Google ScholarGoogle ScholarDigital LibraryDigital Library
  47. K. van den Doel, P. G. Kry, and D. K. Pai. 2001. FoleyAutomatic: Physically-based Sound Effects for Interactive Simulation and Animation. In Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques (ACM Transactions on Graphics (Proceedings of SIGGRAPH 2001)). ACM, New York, NY, USA, 537--544. Google ScholarGoogle ScholarDigital LibraryDigital Library
  48. K. van den Doel and D. K. Pai. 1996. Synthesis of shape dependent sounds with physical modeling. International Conference on Auditory Display 28 (1996).Google ScholarGoogle Scholar
  49. O. von Estorff. 2000. Boundary Elements in Acoustics: Advances and Applications. WIT Press, Southhampton, UK.Google ScholarGoogle Scholar
  50. J.-H. Wang, A. Qu, T. R. Langlois, and D. L. James. 2018. Toward Wave-based Sound Synthesis for Computer Animation. ACM Transactions on Graphics (TOG) 37, 4, Article 109 (July 2018), 16 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  51. Wikipedia. 2019. All-interval twelve-tone row. https://en.wikipedia.org/wiki/All-interval_twelve-tone_rowGoogle ScholarGoogle Scholar
  52. T. W Wu. 2000. Boundary Element Acoustics: Fundamentals and Computer Codes. WIT Press, Southhampton, UK.Google ScholarGoogle Scholar
  53. C. Zheng and D. L. James. 2009. Harmonic Fluids. ACM Transactions on Graphics (Proceedings of SIGGRAPH 2009) 28, 3 (Aug. 2009). Google ScholarGoogle ScholarDigital LibraryDigital Library
  54. C. Zheng and D. L. James. 2010. Rigid-Body Fracture Sound with Precomputed Soundbanks. ACM Transactions on Graphics (Proceedings of SIGGRAPH 2010) 29, 3 (July 2010). Google ScholarGoogle ScholarDigital LibraryDigital Library
  55. C. Zheng and D. L. James. 2011. Toward High-Quality Modal Contact Sound. ACM Transactions on Graphics (Proceedings of SIGGRAPH 2011) 30, 4 (Aug. 2011). Google ScholarGoogle ScholarDigital LibraryDigital Library
  56. E. Zwicker and H. Fastl. 2013. Psychoacoustics: Facts and models. Vol. 22. Springer Science & Business Media.Google ScholarGoogle Scholar

Index Terms

  1. KleinPAT: optimal mode conflation for time-domain precomputation of acoustic transfer

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in

      Full Access

      • Published in

        cover image ACM Transactions on Graphics
        ACM Transactions on Graphics  Volume 38, Issue 4
        August 2019
        1480 pages
        ISSN:0730-0301
        EISSN:1557-7368
        DOI:10.1145/3306346
        Issue’s Table of Contents

        Copyright © 2019 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 12 July 2019
        Published in tog Volume 38, Issue 4

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader