skip to main content
research-article
Open Access

Navigating intrinsic triangulations

Published:12 July 2019Publication History
Skip Abstract Section

Abstract

We present a data structure that makes it easy to run a large class of algorithms from computational geometry and scientific computing on extremely poor-quality surface meshes. Rather than changing the geometry, as in traditional remeshing, we consider intrinsic triangulations which connect vertices by straight paths along the exact geometry of the input mesh. Our key insight is that such a triangulation can be encoded implicitly by storing the direction and distance to neighboring vertices. The resulting signpost data structure then allows geometric and topological queries to be made on-demand by tracing paths across the surface. Existing algorithms can be easily translated into the intrinsic setting, since this data structure supports the same basic operations as an ordinary triangle mesh (vertex insertions, edge splits, etc.). The output of intrinsic algorithms can then be stored on an ordinary mesh for subsequent use; unlike previous data structures, we use a constant amount of memory and do not need to explicitly construct an overlay mesh unless it is specifically requested. Working in the intrinsic setting incurs little computational overhead, yet we can run algorithms on extremely degenerate inputs, including all manifold meshes from the Thingi10k data set. To evaluate our data structure we implement several fundamental geometric algorithms including intrinsic versions of Delaunay refinement and optimal Delaunay triangulation, approximation of Steiner trees, adaptive mesh refinement for PDEs, and computation of Poisson equations, geodesic distance, and flip-free tangent vector fields.

Skip Supplemental Material Section

Supplemental Material

papers_271.mp4

References

  1. Gavin Barill, Neil Dickson, Ryan Schmidt, David I.W. Levin, and Alec Jacobson. 2018. Fast Winding Numbers for Soups and Clouds. ACM Transactions on Graphics (2018). Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Marshall W. Bern, Herbert Edelsbrunner, David Eppstein, Scott A. Mitchell, and Tiow Seng Tan. 1993. Edge Insertion for Optimal Triangulations. Discrete & Computational Geometry 10 (1993). Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. A. I. Bobenko and B. A. Springborn. 2005. A discrete Laplace-Beltrami operator for simplicial surfaces. ArXiv Mathematics e-prints (March 2005). arXiv:math/0503219Google ScholarGoogle Scholar
  4. Jean-Daniel Boissonnat, Ramsay Dyer, and Arijit Ghosh. 2013. Constructing Intrinsic Delaunay Triangulations of Submanifolds. Research Report RR-8273. INRIA.Google ScholarGoogle Scholar
  5. Jean-Daniel Boissonnat and Steve Oudot. 2005. Provably good sampling and meshing of surfaces. Graphical Models 67, 5 (2005). Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. David Bommes, Bruno Lévy, Nico Pietroni, Enrico Puppo, Claudio Silva, Marco Tarini, and Denis Zorin. 2013. Quad-Mesh Generation and Processing: A Survey. Computer Graphics Forum 32, 6 (2013). Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Long Chen and Michael J. Holst. 2011. Efficient Mesh Optimization Schemes based on Optimal Delaunay Triangulations. Comput. Methods Appl. Mech. Engrg. 200 (2011).Google ScholarGoogle Scholar
  8. Long Chen and Jin-chao Xu. 2004. Optimal delaunay triangulations. Journal of Computational Mathematics (2004).Google ScholarGoogle Scholar
  9. Siu-Wing Cheng, Tamal K. Dey, and Jonathan Shewchuk. 2012. Delaunay Mesh Generation (1st ed.). Chapman & Hall/CRC.Google ScholarGoogle Scholar
  10. L. P. Chew. 1987. Constrained Delaunay Triangulations. In Proceedings of the Third Annual Symposium on Computational Geometry (SCG '87). ACM. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. L. P. Chew. 1993. Guaranteed-quality Mesh Generation for Curved Surfaces. In Proceedings of the Ninth Annual Symposium on Computational Geometry (SCG '93). ACM. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Paolo Cignoni, Marco Callieri, Massimiliano Corsini, Matteo Dellepiane, Fabio Ganovelli, and Guido Ranzuglia. 2008. MeshLab: an Open-Source Mesh Processing Tool. In Eurographics Italian Chapter Conference. The Eurographics Association.Google ScholarGoogle Scholar
  13. Keenan Crane, Clarisse Weischedel, and Max Wardetzky. 2013. Geodesics in heat: A new approach to computing distance based on heat flow. ACM Transactions on Graphics (TOG) 32, 5 (2013). Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Fernando de Goes, Mathieu Desbrun, Mark Meyer, and Tony DeRose. 2016. Subdivision exterior calculus for geometry processing. ACM Trans. Graph. 35, 4 (2016). Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Alan Demlow and Maxim A Olshanskii. 2012. An adaptive surface finite element method based on volume meshes. SIAM J. Numer. Anal. 50, 3 (2012).Google ScholarGoogle ScholarCross RefCross Ref
  16. Jeff Erickson and Sariel Har-Peled. 2004. Optimally Cutting a Surface into a Disk. Discrete & Computational Geometry 31, 1 (2004). Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Leman Feng, Pierre Alliez, Laurent Busé, Hervé Delingette, and Mathieu Desbrun. 2018. Curved optimal delaunay triangulation. ACM Trans. Graph. 37, 4 (2018). Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. M. Fisher, B. Springborn, P. Schröder, and A. I. Bobenko. 2007. An algorithm for the construction of intrinsic delaunay triangulations with applications to digital geometry processing. Computing 81, 2 (01 Nov 2007). Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Steven Fortune. 1993. A note on Delaunay diagonal flips. Pattern Recognition Letters 14, 9 (1993). Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Free Software Foundation. 2008. GCC libquadmath.Google ScholarGoogle Scholar
  21. Michael T Goodrich and Roberto Tamassia. 1997. Dynamic Ray Shooting and Shortest Paths in Planar Subdivisions via Balanced Geodesic Triangulations. Journal of Algorithms 23, 1 (1997). Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Leonidas Guibas and Jorge Stolfi. 1985. Primitives for the Manipulation of General Subdivisions and the Computation of Voronoi. ACM Trans. Graph. 4, 2 (April 1985). Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. A. Hatcher. 2002. Algebraic Topology. Cambridge University Press.Google ScholarGoogle Scholar
  24. Yixin Hu, Qingnan Zhou, Xifeng Gao, Alec Jacobson, Denis Zorin, and Daniele Panozzo. 2018. Tetrahedral Meshing in the Wild. ACM Trans. Graph. 37, 4, Article 60 (July 2018). Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Alec Jacobson, Ladislav Kavan, and Olga Sorkine-Hornung. 2013. Robust Inside-outside Segmentation Using Generalized Winding Numbers. ACM Trans. Graph. 32, 4, Article 33 (July 2013). Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Felix Knöppel, Keenan Crane, Ulrich Pinkall, and Peter Schröder. 2013. Globally optimal direction fields. ACM Transactions on Graphics (TOG) 32, 4 (2013), 59. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Felix Knöppel, Keenan Crane, Ulrich Pinkall, and Peter Schröder. 2015. Stripe patterns on surfaces. ACM Transactions on Graphics (TOG) 34, 4 (2015), 39. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Jon W. Van Laarhoven and Jeffrey W. Ohlmann. 2011. A randomized Delaunay triangulation heuristic for the Euclidean Steiner tree problem in &real;<sup>d</sup>. J. Heuristics 17, 4 (2011). Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Yong-Jin Liu, Dian Fan, Chun-Xu Xu, and Ying He. 2017. Constructing Intrinsic Delaunay Triangulations from the Dual of Geodesic Voronoi Diagrams. ACM Trans. Graph. 36, 2, Article 15 (April 2017). Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Yong-Jin Liu, Chun-Xu Xu, Dian Fan, and Ying He. 2015. Efficient Construction and Simplification of Delaunay Meshes. ACM Trans. Graph. 34, 6, Article 174 (Oct. 2015). Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Albert T. Lundell and Stephen Weingram. 1969. Regular and Semisimplicial CW Complexes. 77--115.Google ScholarGoogle Scholar
  32. Richard MacNeal. 1949. The Solution of Partial Differential Equations by Means of Electrical Networks. Ph.D. Dissertation. California Institute of Technology.Google ScholarGoogle Scholar
  33. Khamron Mekchay and Ricardo H Nochetto. 2005. Convergence of adaptive finite element methods for general second order linear elliptic PDEs. SIAM J. Numer. Anal. 43, 5 (2005). Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Pedro Morin, Ricardo H Nochetto, and Kunibert G Siebert. 2002. Convergence of adaptive finite element methods. SIAM review 44, 4 (2002). Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Ashish Myles, Nico Pietroni, and Denis Zorin. 2014. Robust field-aligned global parametrization. ACM Transactions on Graphics (TOG) 33, 4 (2014). Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Giuseppe Patané. 2016. STAR: Laplacian Spectral Kernels and Distances for Geometry Processing and Shape Analysis. In Proceedings of the 37th Annual Conference of the European Association for Computer Graphics: State of the Art Reports. Eurographics Association. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Konrad Polthier and Markus Schmies. 1998. Straightest Geodesics on Polyhedral Surfaces. (1998).Google ScholarGoogle Scholar
  38. Samuel Rippa. 1990. Minimal roughness property of the Delaunay triangulation. Computer Aided Geometric Design 7, 6 (1990). Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Max Schindler and Evan Chen. 2012. Barycentric Coordinates in Olympiad Geometry.Google ScholarGoogle Scholar
  40. Teseo Schneider, Yixin Hu, Jeremie Dumas, Xifeng Gao, Daniele Panozzo, and Denis Zorin. 2018. Decoupling Simulation Accuracy from Mesh Quality. 37, 5 (2018).Google ScholarGoogle Scholar
  41. Silvia Sellán, Herng Yi Cheng, Yuming Ma, Mitchell Dembowski, and Alec Jacobson. 2019. Solid Geometry Processing on Deconstructed Domains. Computer Graphics Forum (2019).Google ScholarGoogle Scholar
  42. Nicholas Sharp, Yousuf Soliman, and Keenan Crane. 2019. The Vector Heat Method. ACM Trans. Graph. 38, 2 (2019). Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. Alla Sheffer and John C. Hart. 2002. Seamster: Inconspicuous Low-distortion Texture Seam Layout. In Proceedings of the Conference on Visualization '02 (VIS '02). IEEE Computer Society. Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. Jonathan Shewchuk. 1999. Lecture Notes on Geometric Robustness. Technical Report. University of California at Berkeley.Google ScholarGoogle Scholar
  45. Jonathan Richard Shewchuk. 1997. Delaunay Refinement Mesh Generation. Ph.D. Dissertation. Carnegie Mellon University. Tech Report CMU-CS-97-137.Google ScholarGoogle Scholar
  46. Philip Shilane, Patrick Min, Michael Kazhdan, and Thomas Funkhouser. 2004. The Princeton Shape Benchmark. In Shape Modeling International.Google ScholarGoogle Scholar
  47. J. Macgregor Smith, D. T. Lee, and Judith S. Liebman. 1981. An O(n log n) heuristic for steiner minimal tree problems on the euclidean metric. Networks 11, 1 (1981).Google ScholarGoogle Scholar
  48. Daniel A Spielman. 2010. Algorithms, Graph Theory, and Linear Equations in Laplacian Matrices. In Proceedings of the International Congress of Mathematicians, Vol. 4.Google ScholarGoogle Scholar
  49. Jane Tournois, Camille Wormser, Pierre Alliez, and Mathieu Desbrun. 2009. Interleaving Delaunay refinement and optimization for practical isotropic tetrahedron mesh generation. 28, 3 (2009), 75. Google ScholarGoogle ScholarDigital LibraryDigital Library
  50. Godfried Toussaint. 1980. The Relative Neighborhood Graph of a Finite Planar Set. Pattern Recognition 12 (1980).Google ScholarGoogle Scholar
  51. Shi-Qing Xin, Shuang-Min Chen, Ying He, Guo-Jin Wang, Xianfeng Gu, and Hong Qin. 2011. Isotropic Mesh Simplification by Evolving the Geodesic Delaunay Triangulation. In ISVD. IEEE Computer Society. Google ScholarGoogle ScholarDigital LibraryDigital Library
  52. Shi-Qing Xin, Xiang Ying, and Ying He. 2012. Constant-time All-pairs Geodesic Distance Queryon Triangle Meshes. In Proceedings of the ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games (I3D '12). ACM. Google ScholarGoogle ScholarDigital LibraryDigital Library
  53. Ran Yi, Yong-Jin Liu, and Ying He. 2018. Delaunay Mesh Simplification with Differential Evolution. In ACM Transactions on Graphics, Vol. 37. Google ScholarGoogle ScholarDigital LibraryDigital Library
  54. Qingnan Zhou, Eitan Grinspun, Denis Zorin, and Alec Jacobson. 2016. Mesh Arrangements for Solid Geometry. ACM Transactions on Graphics (TOG) 35, 4 (2016). Google ScholarGoogle ScholarDigital LibraryDigital Library
  55. Qingnan Zhou and Alec Jacobson. 2016. Thingi10K: A Dataset of 10,000 3D-Printing Models. arXiv preprint arXiv:1605.04797 (2016).Google ScholarGoogle Scholar

Index Terms

  1. Navigating intrinsic triangulations

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in

    Full Access

    • Published in

      cover image ACM Transactions on Graphics
      ACM Transactions on Graphics  Volume 38, Issue 4
      August 2019
      1480 pages
      ISSN:0730-0301
      EISSN:1557-7368
      DOI:10.1145/3306346
      Issue’s Table of Contents

      Copyright © 2019 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 12 July 2019
      Published in tog Volume 38, Issue 4

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader