skip to main content
research-article

Volume-aware design of composite molds

Published:12 July 2019Publication History
Skip Abstract Section

Abstract

We propose a novel technique for the automatic design of molds to cast highly complex shapes. The technique generates composite, two-piece molds. Each mold piece is made up of a hard plastic shell and a flexible silicone part. Thanks to the thin, soft, and smartly shaped silicone part, which is kept in place by a hard plastic shell, we can cast objects of unprecedented complexity. An innovative algorithm based on a volumetric analysis defines the layout of the internal cuts in the silicone mold part. Our approach can robustly handle thin protruding features and intertwined topologies that have caused previous methods to fail. We compare our results with state of the art techniques, and we demonstrate the casting of shapes with extremely complex geometry.

Skip Supplemental Material Section

Supplemental Material

papers_282.mp4

References

  1. Thomas Alderighi, Luigi Malomo, Daniela Giorgi, Nico Pietroni, Bernd Bickel, and Paolo Cignoni. 2018. Metamolds: Computational Design of Silicone Molds. ACM Trans. Graph. 37, 4, Article 136 (July 2018), 13 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Amit H. Bermano, Thomas Funkhouser, and Szymon Rusinkiewicz. 2017. State of the Art in Methods and Representations for Fabrication-Aware Design. Comput. Graph. Forum 36, 2 (May 2017), 509--535. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. S. Biasotti, A. Cerri, D. Giorgi, and M. Spagnuolo. 2013. PHOG: Photometric and Geometric Functions for Textured Shape Retrieval. (2013), 13--22. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Bernd Bickel, Paolo Cignoni, Luigi Malomo, and Nico Pietroni. 2018. State of the Art on Stylized Fabrication. Computer Graphics Forum 37, 6 (2018), 325--342.Google ScholarGoogle ScholarCross RefCross Ref
  5. J. Bloomenthal. 1988. Polygonization of Implicit Surfaces. Comput. Aided Geom. Des. 5, 4 (Nov. 1988), 341--355. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Jules Bloomenthal and Keith Ferguson. 1995. Polygonization of Non-manifold Implicit Surfaces. In Proceedings of the 22Nd Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH '95). ACM, New York, NY, USA, 309--316. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Kathleen S. Bonnell, Mark A. Duchaineau, Daniel R. Schikore, Bernd Hamann, and Kenneth I. Joy. 2003. Material Interface Reconstruction. IEEE Transactions on Visualization and Computer Graphics 9, 4 (Oct. 2003), 500--511. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Pritam Chakraborty and N. Venkata Reddy. 2009. Automatic determination of parting directions, parting lines and surfaces for two-piece permanent molds. Journal of Materials Processing Technology 209, 5 (2009), 2464 -- 2476.Google ScholarGoogle ScholarCross RefCross Ref
  9. B. R. de Araújo, Daniel S. Lopes, Pauline Jepp, Joaquim A. Jorge, and Brian Wyvill. 2015. A Survey on Implicit Surface Polygonization. ACM Comput. Surv. 47, 4, Article 60 (May 2015), 39 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Ernest P De Garmo, J Temple Black, and Ronald A Kohser. 2011. DeGarmo's materials and processes in manufacturing. John Wiley & Sons.Google ScholarGoogle Scholar
  11. H. Edelsbrunner, D. Letscher, and A. Zomorodian. 2000. Topological Persistence and Simplification. (2000), 454--. http://dl.acm.org/citation.cfm?id=795666.796607 Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Sarah F. Frisken Gibson. 1998. Constrained Elastic Surface Nets: Generating Smooth Surfaces from Binary Segmented Data. In Proceedings of the First International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI '98). Springer-Verlag, London, UK, UK, 888--898. http://dl.acm.org/citation.cfm?id=646921.709482 Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Eric Hart. 2013. The Prop Building Guidebook: For Theatre, Film, and Tv. Taylor & Francis.Google ScholarGoogle Scholar
  14. Philipp Herholz, Wojciech Matusik, and Marc Alexa. 2015. Approximating Free-form Geometry with Height Fields for Manufacturing. Comput. Graph. Forum 34, 2 (May 2015), 239--251. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Yixin Hu, Qingnan Zhou, Xifeng Gao, Alec Jacobson, Denis Zorin, and Daniele Panozzo. 2018. Tetrahedral Meshing in the Wild. ACM Trans. Graph. 37, 4, Article 60 (July 2018), 14 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Alan C. Lin and Nguyen Huu Quang. 2014. Automatic generation of mold-piece regions and parting curves for complex CAD models in multi-piece mold design. Computer-Aided Design 57 (2014), 15 -- 28.Google ScholarGoogle ScholarCross RefCross Ref
  17. Ligang Liu, Ariel Shamir, Charlie Wang, and Emily Whitening. 2014. 3D Printing Oriented Design: Geometry and Optimization. In SIGGRAPH Asia 2014 Courses (SA '14). ACM, New York, NY, USA, Article 1. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Luigi Malomo, Nico Pietroni, Bernd Bickel, and Paolo Cignoni. 2016. FlexMolds: Automatic Design of Flexible Shells for Molding. ACM Trans. Graph. 35, 6, Article 223 (Nov. 2016), 12 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. J. Milnor. 1963. Morse Theory. Princeton University Press, New Jersey.Google ScholarGoogle Scholar
  20. Ken Museth, Jeff Lait, John Johanson, Jeff Budsberg, Ron Henderson, Mihai Alden, Peter Cucka, David Hill, and Andrew Pearce. 2013. OpenVDB: An Open-source Data Structure and Toolkit for High-resolution Volumes. In ACM SIGGRAPH 2013 Courses (SIGGRAPH '13). ACM, New York, NY, USA, Article 19, 1 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Kazutaka Nakashima, Thomas Auzinger, Emmanuel Iarussi, Ran Zhang, Takeo Igarashi, and Bernd Bickel. 2018. CoreCavity: Interactive Shell Decomposition for Fabrication with Two-piece Rigid Molds. ACM Trans. Graph. 37, 4, Article 135 (July 2018), 13 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Gregory M. Nielson and Richard Franke. 1997. Computing the Separating Surface for Segmented Data. In Proceedings of the 8th Conference on Visualization '97 (VIS '97). IEEE Computer Society Press, Los Alamitos, CA, USA, 229--233. http://dl.acm.org/citation.cfm?id=266989.267066 Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. A. Medeiros e Sá, K. Rodriguez-Echavarria, N. Pietroni, and P. Cignoni. 2016. State of the Art on Functional Fabrication. In Proceedings of the Eurographics Workshop on Graphics for Digital Fabrication (GraDiFab '16). Eurographics Association, Goslar Germany, Germany, 1--9. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Christian Schüller, Daniele Panozzo, Anselm Grundhöfer, Henning Zimmer, Evgeni Sorkine, and Olga Sorkine-Hornung. 2016. Computational Thermoforming. ACM Trans. Graph. 35, 4, Article 43 (July 2016), 9 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Hang Si. 2015. TetGen, a Delaunay-Based Quality Tetrahedral Mesh Generator. ACM Trans. Math. Softw. 41, 2, Article 11 (Feb. 2015), 36 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Andrea Tagliasacchi, Thomas Delame, Michela Spagnuolo, Nina Amenta, and Alexandru Telea. 2016. 3D Skeletons: A State-of-the-art Report. In Proceedings of the 37th Annual Conference of the European Association for Computer Graphics: State of the Art Reports (EG '16). Eurographics Association, Goslar Germany, Germany, 573--597. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. G.M. Treece, R.W. Prager, and A.H. Gee. 1999. Regularised marching tetrahedra: improved iso-surface extraction. Computers and Graphics 23, 4 (1999), 583 -- 598.Google ScholarGoogle ScholarCross RefCross Ref
  28. Nobuyuki Umetani, Bernd Bickel, and Wojciech Matusik. 2015. Computational Tools for 3D Printing. In ACM SIGGRAPH 2015 Courses (SIGGRAPH '15). ACM, New York, NY, USA, Article 9. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Somlak Wannarumon. 2011. Reviews of Computer-Aided Technologies for Jewelry Design and Casting. Naresuan University Engineering Journal 6, 1 (2011), 45--56.Google ScholarGoogle Scholar
  30. Chunjie Zhang, Xionghui Zhou, and Congxin Li. 2010. Feature extraction from freeform molded parts for moldability analysis. The International Journal of Advanced Manufacturing Technology 48, 1 (01 Apr 2010), 273--282.Google ScholarGoogle ScholarCross RefCross Ref
  31. Qingnan Zhou, Eitan Grinspun, Denis Zorin, and Alec Jacobson. 2016. Mesh Arrangements for Solid Geometry. ACM Trans. Graph. 35, 4, Article 39 (July 2016), 15 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Volume-aware design of composite molds

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in

    Full Access

    • Published in

      cover image ACM Transactions on Graphics
      ACM Transactions on Graphics  Volume 38, Issue 4
      August 2019
      1480 pages
      ISSN:0730-0301
      EISSN:1557-7368
      DOI:10.1145/3306346
      Issue’s Table of Contents

      Copyright © 2019 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 12 July 2019
      Published in tog Volume 38, Issue 4

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader