skip to main content
research-article

Hand modeling and simulation using stabilized magnetic resonance imaging

Published:12 July 2019Publication History
Skip Abstract Section

Abstract

We demonstrate how to acquire complete human hand bone anatomy (meshes) in multiple poses using magnetic resonance imaging (MRI). Such acquisition was previously difficult because MRI scans must be long for high-precision results (over 10 minutes) and because humans cannot hold the hand perfectly still in non-trivial and badly supported poses. We invent a manufacturing process whereby we use lifecasting materials commonly employed in film special effects industry to generate hand molds, personalized to the subject, and to each pose. These molds are both ergonomic and encasing, and they stabilize the hand during scanning. We also demonstrate how to efficiently segment the MRI scans into individual bone meshes in all poses, and how to correspond each bone's mesh to same mesh connectivity across all poses. Next, we interpolate and extrapolate the MRI-acquired bone meshes to the entire range of motion of the hand, producing an accurate data-driven animation-ready rig for bone meshes. We also demonstrate how to acquire not just bone geometry (using MRI) in each pose, but also a matching highly accurate surface geometry (using optical scanners) in each pose, modeling skin pores and wrinkles. We also give a soft tissue Finite Element Method simulation "rig", consisting of novel tet meshing for stability at the joints, spatially varying geometric and material detail, and quality constraints to the acquired skeleton kinematic rig. Given an animation sequence of hand joint angles, our FEM soft tissue rig produces quality hand surface shapes in arbitrary poses in the hand range of motion. Our results qualitatively reproduce important features seen in the photographs of the subject's hand, such as similar overall organic shape and fold formation.

Skip Supplemental Material Section

Supplemental Material

papers_288.mp4

References

  1. Agisoft. 2018. Photoscan, http://www.agisoft.com.Google ScholarGoogle Scholar
  2. AljaSafe. 2018. SmoothOn Inc. www.smooth-on.com.Google ScholarGoogle Scholar
  3. Amira. 2018. Amira for Life Sciences. https://www.fei.com/software/amira-3d-for-life-sciences/.Google ScholarGoogle Scholar
  4. Artec3D. 2018. Spider Scanner, http://www.artec3d.com.Google ScholarGoogle Scholar
  5. Noelle M. Austin. 2005. Chapter 9: The Wrist and Hand Complex". In Levangie, Pamela K.; Norkin, Cynthia C. Joint Structure and Function: A Comprehensive Analysis (4th ed.). F. A. Davis Company.Google ScholarGoogle Scholar
  6. J. Barbič and D. L. James. 2008. Six-DoF haptic rendering of contact between geometrically complex reduced deformable models. IEEE Trans. on Haptics 1, 1 (2008), 39--52. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Pierre-Yves Baudin, Noura Azzabou, Pierre G Carlier, and Nikos Paragios. 2012. Automatic skeletal muscle segmentation through random walks and graph-based seed placement. In IEEE Int. Symp. on Biomedical Imaging (ISBI). 1036--1039.Google ScholarGoogle ScholarCross RefCross Ref
  8. Paul J. Besl and N.D. McKay. 1992. A Method for Registration of 3-D Shapes. IEEE Trans. on Pattern Analysis and Machine Intelligence 14, 2 (1992), 239--256. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Jean-Daniel Boissonnat and Steve Oudot. 2005. Provably good sampling and meshing of surfaces. Graphical Models 67, 5 (2005), 405 -- 451. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. S. Capell, M. Burkhart, B. Curless, T. Duchamp, and Z. Popović. 2005. Physically Based Rigging for Deformable Characters. In Symp. on Computer Animation (SCA). 301--310. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Paolo Cignoni, Marco Callieri, Massimiliano Corsini, Matteo Dellepiane, Fabio Ganovelli, and Guido Ranzuglia. 2008. MeshLab: an Open-Source Mesh Processing Tool. In Eurographics Italian Chapter Conference.Google ScholarGoogle Scholar
  12. CyberGlove Systems. 2017. CyberGrasp. http://www.cyberglovesystems.com/cybergrasp.Google ScholarGoogle Scholar
  13. Mary F Dempsey, Barrie Condon, and Donald M Hadley. 2002. MRI safety review. In Seminars in Ultrasound, CT and MRI, Vol. 23. Elsevier, 392--401.Google ScholarGoogle Scholar
  14. C. M. Deniz, S. Xiang, S. Hallyburton, A. Welbeck, S. Honig, K. Cho, and G. Chang. 2017. Segmentation of the Proximal Femur from MR Images using Deep Convolutional Neural Networks. arXiv preprint arXiv:1704.06176 (2017).Google ScholarGoogle Scholar
  15. D. E. Discher, D. J. Mooney, and P. W. Zandstra. 2009. Growth factors, matrices, and forces combine and control stem cells. Science 324, 5935 (2009), 1673--1677.Google ScholarGoogle Scholar
  16. James S Duncan and Nicholas Ayache. 2000. Medical image analysis: Progress over two decades and the challenges ahead. IEEE Trans. on Pattern Analysis and Machine Intelligence 22, 1 (2000), 85--106. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. M. S. Farvid, T. W. K. Ng, D. C. Chan, P. H. R. Barrett, and G. F. Watts. 2005. Association of adiponectin and resistin with adipose tissue compartments, insulin resistance and dyslipidaemia. Diabetes, Obesity and Metabolism 7, 4 (2005), 406--413.Google ScholarGoogle ScholarCross RefCross Ref
  18. A. Fenster and D. B. Downey. 1996. 3-D ultrasound imaging: a review. IEEE Engineering in Medicine and Biology Magazine 15, 6 (1996), 41--51.Google ScholarGoogle ScholarCross RefCross Ref
  19. Carlos Garre, Fernando Hernández, Antonio Gracia, and Miguel A Otaduy. 2011. Interactive simulation of a deformable hand for haptic rendering. In IEEE World Haptics Conference (WHC). IEEE, 239--244.Google ScholarGoogle ScholarCross RefCross Ref
  20. Benjamin Gilles and Nadia Magnenat-Thalmann. 2010. Musculoskeletal MRI segmentation using multi-resolution simplex meshes with medial representations. Medical image analysis 14, 3 (2010), 291--302.Google ScholarGoogle Scholar
  21. Leo Grady. 2006. Random walks for image segmentation. IEEE Trans. on Pattern Analysis and Machine Intelligence 28, 11 (2006), 1768--1783. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Agneta Gustus and Patrick van der Smagt. 2016. Evaluation of joint type modelling in the human hand. Journal of Biomechanics 49, 13 (2016), 3097 -- 3100.Google ScholarGoogle ScholarCross RefCross Ref
  23. Shangchen Han, Beibei Liu, Robert Wang, Yuting Ye, Christopher D Twigg, and Kenrick Kin. 2018. Online optical marker-based hand tracking with deep labels. ACM Transactions on Graphics (SIGGRAPH 2018) 37, 4 (2018), 166. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Hang Si. 2011. TetGen: A Quality Tetrahedral Mesh Generator and a 3D Delaunay Triangulator.Google ScholarGoogle Scholar
  25. Yixin Hu, Qingnan Zhou, Xifeng Gao, Alec Jacobson, Denis Zorin, and Daniele Panozzo. 2018. Tetrahedral Meshing in the Wild. ACM Trans. on Graphics (SIGGRAPH 2018) 37, 4 (2018), 60:1--60:14. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. G. Irving, J. Teran, and R. Fedkiw. 2004. Invertible Finite Elements for Robust Simulation of Large Deformation. In Symp. on Computer Animation (SCA). 131--140. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. ITK-SNAP. 2018. ITK-SNAP. http://www.itksnap.org/pmwiki/pmwiki.php.Google ScholarGoogle Scholar
  28. Alec Jacobson, Zhigang Deng, Ladislav Kavan, and JP Lewis. 2014. Skinning: Real-time Shape Deformation. In ACM SIGGRAPH 2014 Courses. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. A.I. Kapandji. 2009. The physiology of the joints, 6th Edition, Vol. 1: The Upper Limb. Elsevier Exclusive.Google ScholarGoogle Scholar
  30. L. Kavan, S. Collins, J. Zara, and C. O'Sullivan. 2008. Geometric Skinning with Approximate Dual Quaternion Blending. ACM Trans. on Graphics 27, 4 (2008). Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Baris Kayalibay, Grady Jensen, and Patrick van der Smagt. 2017. CNN-based segmentation of medical imaging data. arXiv preprint arXiv:1701.03056 (2017).Google ScholarGoogle Scholar
  32. Junggon Kim and Nancy S Pollard. 2011. Fast simulation of skeleton-driven deformable body characters. ACM Trans. on Graphics (TOG) 30, 5 (2011), 121. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Jonathan P King, Dominik Bauer, Cornelia Schlagenhauf, Kai-Hung Chang, Daniele Moro, Nancy Pollard, and Stelian Coros. 2018. Design. Fabrication, and Evaluation of Tendon-Driven Multi-Fingered Foam Hands. In IEEE-RAS Int. Conf. on Humanoid Robots (Humanoids). 1--9.Google ScholarGoogle ScholarCross RefCross Ref
  34. Paul G. Kry, Doug L. James, and Dinesh K. Pai. 2002. EigenSkin: Real Time Large Deformation Character Skinning in Hardware. In Proc. of the Symp. on Comp. Animation 2002. 153--160. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Tsuneya Kurihara and Natsuki Miyata. 2004. Modeling deformable human hands from medical images. In Symp. on Computer Animation (SCA). 355--363. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. LeapMotion. 2017. https://www.leapmotion.com.Google ScholarGoogle Scholar
  37. S. H. Lee, E. Sifakis, and D. Terzopoulos. 2009. Comprehensive Biomechanical Modeling and Simulation of the Upper Body. ACM Trans. on Graphics 28, 4 (2009), 99:1--99:17. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. J. P. Lewis, Matt Cordner, and Nickson Fong. 2000. Pose Space Deformations: A Unified Approach to Shape Interpolation and Skeleton-Driven Deformation. In Proc. of ACM SIGGRAPH 2000. 165--172. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Duo Li, Shinjiro Sueda, Debanga R Neog, and Dinesh K Pai. 2013. Thin Skin Elastodynamics. ACM Trans. Graph. (Proc. SIGGRAPH) 32, 4 (2013), 49:1--49:9. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Libin Liu, KangKang Yin, Bin Wang, and Baining Guo. 2013. Simulation and control of skeleton-driven soft body characters. ACM Trans. on Graphics (SIGGRAPH Asia 2013) 32, 6 (2013), 215. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. N. Magnenat-Thalmann, R. Laperrire, and D. Thalmann. 1988. Joint-dependent local deformations for hand animation and object grasping. In Proc. of Graphics Interface. Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. Joe Mancewicz, Matt L. Derksen, Hans Rijpkema, and Cyrus A. Wilson. 2014. Delta Mush: Smoothing Deformations While Preserving Detail. In Proceedings of the Fourth Symposium on Digital Production (DigiPro '14). 7--11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. G. Marai, D. Laidlaw, J. Coburn, M. Upal, and J. Crisco. 2003. A 3D method for segmenting and registering carpal bones from CT volume images. In Proc. of Annual Meeting of the American Society of Biomechanics.Google ScholarGoogle Scholar
  44. A. McAdams, Y. Zhu, A. Selle, M. Empey, R. Tamstorf, J. Teran, and E. Sifakis. 2011. Efficient elasticity for character skinning with contact and collisions. ACM Trans. on Graphics (SIGGRAPH 2011) 30, 4 (2011). Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. Tim McInerney and Demetri Terzopoulos. 2008. Deformable models in medical image analysis: a survey. Medical Image Analysis 1, 2 (2008), 91--108.Google ScholarGoogle ScholarCross RefCross Ref
  46. Fernand Meyer. 1992. Color image segmentation. In International Conf. on Image Processing and its Applications. IET, 303--306.Google ScholarGoogle Scholar
  47. Aslan Miriyev, Kenneth Stack, and Hod Lipson. 2017. Soft material for soft actuators. Nature Communications 8, 596 (2017).Google ScholarGoogle Scholar
  48. N. Miyata, M. Kouch, M. Mochimaru, and T. Kurihara. 2005. Finger joint kinematics from MR images. In IEEE/RSJ Int. Conf. on Intelligent Robots and Systems. 2750--2755.Google ScholarGoogle Scholar
  49. NimbleVR. 2012. http://nimblevr.com.Google ScholarGoogle Scholar
  50. RadiologyInfo. 2018. Radiation Dose in X-Ray and CT Exams. https://www.radiologyinfo.org/en/pdf/safety-xray.pdf.Google ScholarGoogle Scholar
  51. Taehyun Rhee, J.P. Lewis, and Ulrich Neumann. 2006. Real-Time Weighted Pose-Space Deformation on the GPU. In Proc. of Eurographics 2006, Vol. 25.Google ScholarGoogle ScholarCross RefCross Ref
  52. Javier Romero, Dimitrios Tzionas, and Michael J. Black. 2017. Embodied Hands: Modeling and Capturing Hands and Bodies Together. ACM Trans. on Graphics (SIGGRAPH Asia 2017) 36, 6 (2017), 245:1--245:17. Google ScholarGoogle ScholarDigital LibraryDigital Library
  53. Alexandru Rusu. 2011. Segmentation of bone structures in Magnetic Resonance Images (MRI) for human hand skeletal kinematics modelling. Master's thesis. German Aerospace Center.Google ScholarGoogle Scholar
  54. Prashant Sachdeva, Shinjiro Sueda, Susanne Bradley, Mikhail Fain, and Dinesh K. Pai. 2015. Biomechanical Simulation and Control of Hands and Tendinous Systems. ACM Trans. Graph. 34, 4 (2015), 42:1--42:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  55. Cornelia Schlagenhauf, Dominik Bauer, Kai-Hung Chang, Jonathan P King, Daniele Moro, Stelian Coros, and Nancy Pollard. 2018. Control of tendon-driven soft foam robot hands. In IEEE-RAS Int. Conf. on Humanoid Robots (Humanoids). 1--7.Google ScholarGoogle ScholarCross RefCross Ref
  56. Jérôme Schmid, Jinman Kim, and Nadia Magnenat-Thalmann. 2011. Robust statistical shape models for MRI bone segmentation in presence of small field of view. Medical image analysis 15, 1 (2011), 155--168.Google ScholarGoogle Scholar
  57. Jérôme Schmid and Nadia Magnenat-Thalmann. 2008. MRI bone segmentation using deformable models and shape priors. In Int. Conf. on Medical Image Computing and Computer-Assisted Intervention. 119--126. Google ScholarGoogle ScholarDigital LibraryDigital Library
  58. Breannan Smith, Fernando De Goes, and Theodore Kim. 2018. Stable Neo-Hookean Flesh Simulation. ACM Trans. Graph. 37, 2 (2018), 12:1--12:15. Google ScholarGoogle ScholarDigital LibraryDigital Library
  59. Ole Vegard Solberg, Frank Lindseth, Hans Torp, Richard E. Blake, and Toril A. Nagelhus Hernes. 2007. Freehand 3D Ultrasound Reconstruction Algorithms: A Review. Ultrasound in Medicine and Biology 33, 7 (2007), 991 -- 1009.Google ScholarGoogle ScholarCross RefCross Ref
  60. Georg Stillfried. 2015. Kinematic modelling of the human hand for robotics. Ph.D. Dissertation. Technische Universität München.Google ScholarGoogle Scholar
  61. Shinjiro Sueda, Andrew Kaufman, and Dinesh K. Pai. 2008. Musculotendon Simulation for Hand Animation. ACM Trans. Graph. (Proc. SIGGRAPH) 27, 3 (2008). Google ScholarGoogle ScholarDigital LibraryDigital Library
  62. Tissue. 2013. Weta Digital: Tissue Muscle and Fat Simulation System.Google ScholarGoogle Scholar
  63. Rodolphe Vaillant, Gäel Guennebaud, Loïc Barthe, Brian Wyvill, and Marie-Paule Cani. 2014. Robust Iso-surface Tracking for Interactive Character Skinning. ACM Trans. on Graphics (SIGGRAPH Asia 2014) 33, 6 (2014), 189:1--137:11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  64. Patrick van der Smagt and Georg Stillfried. 2008. Using MRI data to compute a hand kinematic model. In Conf. on Motion and Vibration Control (MOVIC).Google ScholarGoogle Scholar
  65. VTK. 2018. VTK. https://www.vtk.org/.Google ScholarGoogle Scholar
  66. Andreas Wächter and Lorenz T. Biegler. 2006. On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106, 1 (01 Mar 2006), 25--57. Google ScholarGoogle ScholarDigital LibraryDigital Library
  67. Andrea Walther and Andreas Griewank. 2009. Getting Started with ADOL-C. In Combinatorial scientific computing. 181--202.Google ScholarGoogle Scholar
  68. R. Y. Wang, S. Paris, and J. Popović. 2011. 6D Hands: Markerless Hand Tracking for Computer Aided Design. In ACM User Interface Software and Technology (UIST). Google ScholarGoogle ScholarDigital LibraryDigital Library
  69. Robert Y. Wang and Jovan Popović. 2009. Real-time hand-tracking with a color glove. ACM Trans. on Graphics (SIGGRAPH 2009) 28, 3 (2009), 63:1--63:8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  70. Robert E. Watson. 2015. Lessons Learned from MRI Safety Events. Current Radiology Reports 3, 10 (12 Aug 2015), 37.Google ScholarGoogle Scholar
  71. C. Wex, S. Arndt, A. Stoll, C. Bruns, and Y. Kupriyanova. 2015. Isotropic incompressible hyperelastic models for modelling the mechanical behaviour of biological tissues: a review. Biomedical Engineering / Biomedizinische Technik 60, 6 (2015), 577--592.Google ScholarGoogle ScholarCross RefCross Ref
  72. Nkenge Wheatland, Yingying Wang, Huaguang Song, Michael Neff, Victor Zordan, and Sophie Jörg. 2015. State of the art in hand and finger modeling and animation. In Computer Graphics Forum, Vol. 34. 735--760. Google ScholarGoogle ScholarDigital LibraryDigital Library
  73. Wrap3. 2018. Nonlinear Iterative Closest Point mesh registration software. https://www.russian3dscanner.com.Google ScholarGoogle Scholar
  74. Shanxin Yuan, Qi Ye, Björn Stenger, Siddhant Jain, and Tae-Kyun Kim. 2017. Bighand2. 2M benchmark: Hand pose dataset and state of the art analysis. In IEEE Conf. on Computer Vision and Pattern Recognition (CVPR). 2605--2613.Google ScholarGoogle Scholar
  75. Zygote. 2016. Zygote body. http://www.zygotebody.com.Google ScholarGoogle Scholar

Index Terms

  1. Hand modeling and simulation using stabilized magnetic resonance imaging

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in

    Full Access

    • Published in

      cover image ACM Transactions on Graphics
      ACM Transactions on Graphics  Volume 38, Issue 4
      August 2019
      1480 pages
      ISSN:0730-0301
      EISSN:1557-7368
      DOI:10.1145/3306346
      Issue’s Table of Contents

      Copyright © 2019 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 12 July 2019
      Published in tog Volume 38, Issue 4

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader