skip to main content
research-article

Harmonic triangulations

Published:12 July 2019Publication History
Skip Abstract Section

Abstract

We introduce the notion of harmonic triangulations: a harmonic triangulation simultaneously minimizes the Dirichlet energy of all piecewise linear functions. By a famous result of Rippa, Delaunay triangulations are the harmonic triangulations of planar point sets. We prove by explicit counterexample that in 3D a harmonic triangulation does not exist in general. However, we show that bistellar flips are harmonic: if they decrease Dirichlet energy for one set of function values, they do so for all. This observation gives rise to the notion of locally harmonic triangulations. We demonstrate that locally harmonic triangulations can be efficiently computed, and efficiently reduce sliver tetrahedra. The notion of harmonic triangulation also gives rise to a scalar measure of the quality of a triangulation, which can be used to prioritize flips and optimize the position of vertices. Tetrahedral meshes generated by optimizing this function generally show better quality than Delaunay-based optimization techniques.

Skip Supplemental Material Section

Supplemental Material

papers_293.mp4

References

  1. Marc Alexa and Max Wardetzky. 2011. Discrete Laplacians on General Polygonal Meshes. ACM Trans. Graph. 30, 4, Article 102 (July 2011), 10 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Aleksandr D Alexandrov. 2005. Convex polyhedra. Springer, Berlin, Heidelberg.Google ScholarGoogle Scholar
  3. Pierre Alliez, David Cohen-Steiner, Mariette Yvinec, and Mathieu Desbrun. 2005. Variational Tetrahedral Meshing. ACM Trans. Graph. 24, 3 (July 2005), 617--625. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Franz Aurenhammer. 1987. Power diagrams: properties, algorithms and applications. SIAM J. Comput. 16, 1 (1987), 78--96. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Ivo M. Babuška and A. K. Aziz. 1976. On the Angle Condition in the Finite Element Method. SIAM J. Numer. Anal. 13, 2 (1976), 214--226.Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Randolph E. Bank and R. Kent Smith. 1997. Mesh Smoothing Using A Posteriori Error Estimates. SIAM J. Numer. Anal. 34, 3 (June 1997), 979--997. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Marshall Bern, Paul Chew, David Eppstein, and Jim Ruppert. 1995. Dihedral Bounds for Mesh Generation in High Dimensions. In Proceedings of the Sixth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA '95). Society for Industrial and Applied Mathematics, Philadelphia, PA, USA, 189--196. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Alexander I. Bobenko and Boris A. Springborn. 2007. A discrete Laplace-Beltrami operator for simplicial surfaces. Discrete Comput. Geom. 38, 4 (2007), 740--756. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Arthur Cayley. 1869. A Memoir on Cubic Surfaces. Philosophical Transactions of the Royal Society of London 159 (1869), 231--326.Google ScholarGoogle ScholarCross RefCross Ref
  10. Long Chen. 2004. Mesh Smoothing Schemes Based on Optimal Delaunay Triangulations.. In Proceedings, 13th International Meshing Roundtable. Sandia National Laboratories, Williamburg, VA, USA, 109--120.Google ScholarGoogle Scholar
  11. Long Chen and Jinchao Xu. 2004. Optimal Delaunay Triangulations. Journal of Computational Mathematics 22, 2 (2004), 299--308.Google ScholarGoogle Scholar
  12. Renjie Chen, Yin Xu, Craig Gotsman, and Ligang Liu. 2010. A spectral characterization of the Delaunay triangulation. Computer Aided Geometric Design 27, 4 (2010), 295 -- 300. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Zhonggui Chen, Wenping Wang, Bruno Lèvy, L.igang Liu, and Feng Sun. 2014. Revisiting Optimal Delaunay Triangulation for 3D Graded Mesh Generation. SIAM Journal on Scientific Computing 36, 3 (2014), A930--A954.Google ScholarGoogle ScholarCross RefCross Ref
  14. Siu-Wing Cheng, Tamal K. Dey, Herbert Edelsbrunner, Michael A. Facello, and Shang-Hua Teng. 2000. Sliver Exudation. J. ACM 47, 5 (Sept. 2000), 883--904. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Fernando de Goes, Pooran Memari, Patrick Mullen, and Mathieu Desbrun. 2014. Weighted Triangulations for Geometry Processing. ACM Trans. Graph. 33, 3 (2014), 28:1--28:13. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Jesus A. De Loera, Jorg Rambau, and Francisco Santos. 2010. Triangulations: Structures for Algorithms and Applications (1st ed.). Springer, Berlin, Heidelberg. Google ScholarGoogle ScholarCross RefCross Ref
  17. Richard J Duffin. 1959. Distributed and lumped networks. Journal of Mathematics and Mechanics 8, 5 (1959), 793--826.Google ScholarGoogle Scholar
  18. Gerhard Dziuk. 1988. Finite Elements for the Beltrami operator on arbitrary surfaces. In Partial Differential Equations and Calculus of Variations, Stefan Hildebrandt and Rolf Leis (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 142--155.Google ScholarGoogle Scholar
  19. Herbert Edelsbrunner and Nimish R. Shah. 1992. Incremental Topological Flipping Works for Regular Triangulations. In Proceedings of the Eighth Annual Symposium on Computational Geometry (SCG '92). ACM, New York, NY, USA, 43--52. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Leman Feng, Pierre Alliez, Laurent Busé, Hervé Delingette, and Mathieu Desbrun. 2018. Curved Optimal Delaunay Triangulation. ACM Trans. Graph. 37, 4, Article 61 (July 2018), 16 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Jean Gallier and Jocelyn Quaintance. 2017. Aspects of Convex Geometry Polyhedra, Linear Programming, Shellings, Voronoi Diagrams, Delaunay Triangulations. Book in progress, earlier version available as arXiv:0805.0292.Google ScholarGoogle Scholar
  22. Gaël Guennebaud, Benoît Jacob, et al. 2010. Eigen v3. http://eigen.tuxfamily.org.Google ScholarGoogle Scholar
  23. Yixin Hu, Qingnan Zhou, Xifeng Gao, Alec Jacobson, Denis Zorin, and Daniele Panozzo. 2018. Tetrahedral Meshing in the Wild. ACM Trans. Graph. 37, 4, Article 60 (July 2018), 14 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Clément Jamin, Sylvain Pion, and Monique Teillaud. 2018. 3D Triangulations. In CGAL User and Reference Manual (4.13 ed.). CGAL Editorial Board. https://doc.cgal.org/4.13/Manual/packages.html#PkgTriangulation3SummaryGoogle ScholarGoogle Scholar
  25. Barry Joe. 1989. Three-Dimensional Triangulations from Local Transformations. SIAM J. Sci. Stat. Comput. 10, 4 (July 1989), 718--741.Google ScholarGoogle ScholarCross RefCross Ref
  26. Michal Křížek. 1992. On the Maximum Angle Condition for Linear Tetrahedral Elements. SIAM J. Numer. Anal. 29, 2 (April 1992), 513--520. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. François Labelle and Jonathan Richard Shewchuk. 2007. Isosurface Stuffing: Fast Tetrahedral Meshes with Good Dihedral Angles. ACM Trans. Graph. 26, 3, Article 57 (July 2007), 10 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Charles L. Lawson. 1972. Transforming triangulations. Discrete Mathematics 3, 4 (1972), 365 -- 372. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Mark Meyer, Mathieu Desbrun, Peter Schröder, and Alan H. Barr. 2003. Discrete Differential-Geometry Operators for Triangulated 2-Manifolds. In Visualization and Mathematics III, Hans-Christian Hege and Konrad Polthier (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 35--57.Google ScholarGoogle Scholar
  30. Neil Molino, Robert Bridson, Joseph Teran, and Ronald Fedkiw. 2003. A crystalline, red green strategy for meshing highly deformable objects with tetrahedra. In Proceedings, 12th International Meshing Roundtable. Sandia National Laboratories, Santa Fe, NM, USA, 103--114.Google ScholarGoogle Scholar
  31. Oleg R. Musin. 1997. Properties of the Delaunay Triangulation. In Proceedings of the Thirteenth Annual Symposium on Computational Geometry (SCG '97). ACM, New York, NY, USA, 424--426. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Ulrich Pinkall and Konrad Polthier. 1993. Computing discrete minimal surfaces and their conjugates. Experim. Math. 2 (1993), 15--36.Google ScholarGoogle ScholarCross RefCross Ref
  33. William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P. Flannery. 1992. Numerical Recipes in C: The Art of Scientific Computing (second ed.). Cambridge University Press. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Samuel Rippa. 1990. Minimal Roughness Property of the Delaunay Triangulation. Comput. Aided Geom. Des. 7, 6 (Oct. 1990), 489--497. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Jonathan Shewchuk. 2002a. What is a good linear finite element? interpolation, conditioning, anisotropy, and quality measures (preprint). https://people.eecs.berkeley.edu/~jrs/papers/elemj.pdfGoogle ScholarGoogle Scholar
  36. Jonathan Richard Shewchuk. 2002b. Delaunay Refinement Algorithms for Triangular Mesh Generation. Comput. Geom. Theory Appl. 22, 1-3 (May 2002), 21--74. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. R. Sibson. 1978. Locally equiangular triangulations. Comput. J. 21, 3 (1978), 243--245.Google ScholarGoogle Scholar
  38. Jane Tournois, Camille Wormser, Pierre Alliez, and Mathieu Desbrun. 2009. Interleaving Delaunay Refinement and Optimization for Practical Isotropic Tetrahedron Mesh Generation. ACM Trans. Graph. 28, 3, Article 75 (July 2009), 9 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Max Wardetzky, Saurabh Mathur, Felix Kälberer, and Eitan Grinspun. 2007. Discrete Laplace Operators: No Free Lunch. In Proceedings of the Fifth Eurographics Symposium on Geometry Processing (SGP '07). Eurographics Association, Aire-la-Ville, Switzerland, Switzerland, 33--37. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Jinchao Xu and Ludmil Zikatanov. 1999. A Monotone Finite Element Scheme for Convection-diffusion Equations. Math. Comput. 68, 228 (Oct. 1999), 1429--1446. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Harmonic triangulations

          Recommendations

          Comments

          Login options

          Check if you have access through your login credentials or your institution to get full access on this article.

          Sign in

          Full Access

          • Published in

            cover image ACM Transactions on Graphics
            ACM Transactions on Graphics  Volume 38, Issue 4
            August 2019
            1480 pages
            ISSN:0730-0301
            EISSN:1557-7368
            DOI:10.1145/3306346
            Issue’s Table of Contents

            Copyright © 2019 ACM

            Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

            Publisher

            Association for Computing Machinery

            New York, NY, United States

            Publication History

            • Published: 12 July 2019
            Published in tog Volume 38, Issue 4

            Permissions

            Request permissions about this article.

            Request Permissions

            Check for updates

            Qualifiers

            • research-article

          PDF Format

          View or Download as a PDF file.

          PDF

          eReader

          View online with eReader.

          eReader