Abstract
We introduce the notion of harmonic triangulations: a harmonic triangulation simultaneously minimizes the Dirichlet energy of all piecewise linear functions. By a famous result of Rippa, Delaunay triangulations are the harmonic triangulations of planar point sets. We prove by explicit counterexample that in 3D a harmonic triangulation does not exist in general. However, we show that bistellar flips are harmonic: if they decrease Dirichlet energy for one set of function values, they do so for all. This observation gives rise to the notion of locally harmonic triangulations. We demonstrate that locally harmonic triangulations can be efficiently computed, and efficiently reduce sliver tetrahedra. The notion of harmonic triangulation also gives rise to a scalar measure of the quality of a triangulation, which can be used to prioritize flips and optimize the position of vertices. Tetrahedral meshes generated by optimizing this function generally show better quality than Delaunay-based optimization techniques.
Supplemental Material
- Marc Alexa and Max Wardetzky. 2011. Discrete Laplacians on General Polygonal Meshes. ACM Trans. Graph. 30, 4, Article 102 (July 2011), 10 pages. Google Scholar
Digital Library
- Aleksandr D Alexandrov. 2005. Convex polyhedra. Springer, Berlin, Heidelberg.Google Scholar
- Pierre Alliez, David Cohen-Steiner, Mariette Yvinec, and Mathieu Desbrun. 2005. Variational Tetrahedral Meshing. ACM Trans. Graph. 24, 3 (July 2005), 617--625. Google Scholar
Digital Library
- Franz Aurenhammer. 1987. Power diagrams: properties, algorithms and applications. SIAM J. Comput. 16, 1 (1987), 78--96. Google Scholar
Digital Library
- Ivo M. Babuška and A. K. Aziz. 1976. On the Angle Condition in the Finite Element Method. SIAM J. Numer. Anal. 13, 2 (1976), 214--226.Google Scholar
Digital Library
- Randolph E. Bank and R. Kent Smith. 1997. Mesh Smoothing Using A Posteriori Error Estimates. SIAM J. Numer. Anal. 34, 3 (June 1997), 979--997. Google Scholar
Digital Library
- Marshall Bern, Paul Chew, David Eppstein, and Jim Ruppert. 1995. Dihedral Bounds for Mesh Generation in High Dimensions. In Proceedings of the Sixth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA '95). Society for Industrial and Applied Mathematics, Philadelphia, PA, USA, 189--196. Google Scholar
Digital Library
- Alexander I. Bobenko and Boris A. Springborn. 2007. A discrete Laplace-Beltrami operator for simplicial surfaces. Discrete Comput. Geom. 38, 4 (2007), 740--756. Google Scholar
Digital Library
- Arthur Cayley. 1869. A Memoir on Cubic Surfaces. Philosophical Transactions of the Royal Society of London 159 (1869), 231--326.Google Scholar
Cross Ref
- Long Chen. 2004. Mesh Smoothing Schemes Based on Optimal Delaunay Triangulations.. In Proceedings, 13th International Meshing Roundtable. Sandia National Laboratories, Williamburg, VA, USA, 109--120.Google Scholar
- Long Chen and Jinchao Xu. 2004. Optimal Delaunay Triangulations. Journal of Computational Mathematics 22, 2 (2004), 299--308.Google Scholar
- Renjie Chen, Yin Xu, Craig Gotsman, and Ligang Liu. 2010. A spectral characterization of the Delaunay triangulation. Computer Aided Geometric Design 27, 4 (2010), 295 -- 300. Google Scholar
Digital Library
- Zhonggui Chen, Wenping Wang, Bruno Lèvy, L.igang Liu, and Feng Sun. 2014. Revisiting Optimal Delaunay Triangulation for 3D Graded Mesh Generation. SIAM Journal on Scientific Computing 36, 3 (2014), A930--A954.Google Scholar
Cross Ref
- Siu-Wing Cheng, Tamal K. Dey, Herbert Edelsbrunner, Michael A. Facello, and Shang-Hua Teng. 2000. Sliver Exudation. J. ACM 47, 5 (Sept. 2000), 883--904. Google Scholar
Digital Library
- Fernando de Goes, Pooran Memari, Patrick Mullen, and Mathieu Desbrun. 2014. Weighted Triangulations for Geometry Processing. ACM Trans. Graph. 33, 3 (2014), 28:1--28:13. Google Scholar
Digital Library
- Jesus A. De Loera, Jorg Rambau, and Francisco Santos. 2010. Triangulations: Structures for Algorithms and Applications (1st ed.). Springer, Berlin, Heidelberg. Google Scholar
Cross Ref
- Richard J Duffin. 1959. Distributed and lumped networks. Journal of Mathematics and Mechanics 8, 5 (1959), 793--826.Google Scholar
- Gerhard Dziuk. 1988. Finite Elements for the Beltrami operator on arbitrary surfaces. In Partial Differential Equations and Calculus of Variations, Stefan Hildebrandt and Rolf Leis (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 142--155.Google Scholar
- Herbert Edelsbrunner and Nimish R. Shah. 1992. Incremental Topological Flipping Works for Regular Triangulations. In Proceedings of the Eighth Annual Symposium on Computational Geometry (SCG '92). ACM, New York, NY, USA, 43--52. Google Scholar
Digital Library
- Leman Feng, Pierre Alliez, Laurent Busé, Hervé Delingette, and Mathieu Desbrun. 2018. Curved Optimal Delaunay Triangulation. ACM Trans. Graph. 37, 4, Article 61 (July 2018), 16 pages. Google Scholar
Digital Library
- Jean Gallier and Jocelyn Quaintance. 2017. Aspects of Convex Geometry Polyhedra, Linear Programming, Shellings, Voronoi Diagrams, Delaunay Triangulations. Book in progress, earlier version available as arXiv:0805.0292.Google Scholar
- Gaël Guennebaud, Benoît Jacob, et al. 2010. Eigen v3. http://eigen.tuxfamily.org.Google Scholar
- Yixin Hu, Qingnan Zhou, Xifeng Gao, Alec Jacobson, Denis Zorin, and Daniele Panozzo. 2018. Tetrahedral Meshing in the Wild. ACM Trans. Graph. 37, 4, Article 60 (July 2018), 14 pages. Google Scholar
Digital Library
- Clément Jamin, Sylvain Pion, and Monique Teillaud. 2018. 3D Triangulations. In CGAL User and Reference Manual (4.13 ed.). CGAL Editorial Board. https://doc.cgal.org/4.13/Manual/packages.html#PkgTriangulation3SummaryGoogle Scholar
- Barry Joe. 1989. Three-Dimensional Triangulations from Local Transformations. SIAM J. Sci. Stat. Comput. 10, 4 (July 1989), 718--741.Google Scholar
Cross Ref
- Michal Křížek. 1992. On the Maximum Angle Condition for Linear Tetrahedral Elements. SIAM J. Numer. Anal. 29, 2 (April 1992), 513--520. Google Scholar
Digital Library
- François Labelle and Jonathan Richard Shewchuk. 2007. Isosurface Stuffing: Fast Tetrahedral Meshes with Good Dihedral Angles. ACM Trans. Graph. 26, 3, Article 57 (July 2007), 10 pages. Google Scholar
Digital Library
- Charles L. Lawson. 1972. Transforming triangulations. Discrete Mathematics 3, 4 (1972), 365 -- 372. Google Scholar
Digital Library
- Mark Meyer, Mathieu Desbrun, Peter Schröder, and Alan H. Barr. 2003. Discrete Differential-Geometry Operators for Triangulated 2-Manifolds. In Visualization and Mathematics III, Hans-Christian Hege and Konrad Polthier (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 35--57.Google Scholar
- Neil Molino, Robert Bridson, Joseph Teran, and Ronald Fedkiw. 2003. A crystalline, red green strategy for meshing highly deformable objects with tetrahedra. In Proceedings, 12th International Meshing Roundtable. Sandia National Laboratories, Santa Fe, NM, USA, 103--114.Google Scholar
- Oleg R. Musin. 1997. Properties of the Delaunay Triangulation. In Proceedings of the Thirteenth Annual Symposium on Computational Geometry (SCG '97). ACM, New York, NY, USA, 424--426. Google Scholar
Digital Library
- Ulrich Pinkall and Konrad Polthier. 1993. Computing discrete minimal surfaces and their conjugates. Experim. Math. 2 (1993), 15--36.Google Scholar
Cross Ref
- William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P. Flannery. 1992. Numerical Recipes in C: The Art of Scientific Computing (second ed.). Cambridge University Press. Google Scholar
Digital Library
- Samuel Rippa. 1990. Minimal Roughness Property of the Delaunay Triangulation. Comput. Aided Geom. Des. 7, 6 (Oct. 1990), 489--497. Google Scholar
Digital Library
- Jonathan Shewchuk. 2002a. What is a good linear finite element? interpolation, conditioning, anisotropy, and quality measures (preprint). https://people.eecs.berkeley.edu/~jrs/papers/elemj.pdfGoogle Scholar
- Jonathan Richard Shewchuk. 2002b. Delaunay Refinement Algorithms for Triangular Mesh Generation. Comput. Geom. Theory Appl. 22, 1-3 (May 2002), 21--74. Google Scholar
Digital Library
- R. Sibson. 1978. Locally equiangular triangulations. Comput. J. 21, 3 (1978), 243--245.Google Scholar
- Jane Tournois, Camille Wormser, Pierre Alliez, and Mathieu Desbrun. 2009. Interleaving Delaunay Refinement and Optimization for Practical Isotropic Tetrahedron Mesh Generation. ACM Trans. Graph. 28, 3, Article 75 (July 2009), 9 pages. Google Scholar
Digital Library
- Max Wardetzky, Saurabh Mathur, Felix Kälberer, and Eitan Grinspun. 2007. Discrete Laplace Operators: No Free Lunch. In Proceedings of the Fifth Eurographics Symposium on Geometry Processing (SGP '07). Eurographics Association, Aire-la-Ville, Switzerland, Switzerland, 33--37. Google Scholar
Digital Library
- Jinchao Xu and Ludmil Zikatanov. 1999. A Monotone Finite Element Scheme for Convection-diffusion Equations. Math. Comput. 68, 228 (Oct. 1999), 1429--1446. Google Scholar
Digital Library
Index Terms
Harmonic triangulations
Recommendations
Conforming weighted delaunay triangulations
Given a set of points together with a set of simplices we show how to compute weights associated with the points such that the weighted Delaunay triangulation of the point set contains the simplices, if possible. For a given triangulated surface, this ...
A spectral characterization of the Delaunay triangulation
The Delaunay triangulation of a planar point set is a fundamental construct in computational geometry. A simple algorithm to generate it is based on flips of diagonal edges in convex quads. We characterize the effect of a single edge flip in a ...
A Monotonicity Property for Weighted Delaunay Triangulations
Given a triangulation of points in the plane and a function on the points, one may consider the Dirichlet energy, which is related to the Dirichlet energy of a smooth function. In fact, the Dirichlet energy can be derived from a finite element ...





Comments