skip to main content
research-article

Foveated AR: dynamically-foveated augmented reality display

Published:12 July 2019Publication History
Skip Abstract Section

Abstract

We present a near-eye augmented reality display with resolution and focal depth dynamically driven by gaze tracking. The display combines a traveling microdisplay relayed off a concave half-mirror magnifier for the high-resolution foveal region, with a wide field-of-view peripheral display using a projector-based Maxwellian-view display whose nodal point is translated to follow the viewer's pupil during eye movements using a traveling holographic optical element. The same optics relay an image of the eye to an infrared camera used for gaze tracking, which in turn drives the foveal display location and peripheral nodal point. Our display supports accommodation cues by varying the focal depth of the microdisplay in the foveal region, and by rendering simulated defocus on the "always in focus" scanning laser projector used for peripheral display. The resulting family of displays significantly improves on the field-of-view, resolution, and form-factor tradeoff present in previous augmented reality designs. We show prototypes supporting 30, 40 and 60 cpd foveal resolution at a net 85° × 78° field of view per eye.

References

  1. G. Abadie. 2018. A Life of a Bokeh. SIGGRAPH Course: Advances in real-time rendering in games part 1.Google ScholarGoogle Scholar
  2. K. Akşit, W. Lopes, J. Kim, P. Shirley, and D. Luebke. 2017. Near-Eye Varifocal Augmented Reality Display using See-Through Screens. In Proc. of SIGGRAPH Asia.Google ScholarGoogle Scholar
  3. R. Albert, A. Patney, D. Luebke, and J. Kim. 2017. Latency requirements for foveated rendering in virtual reality. ACM TAP 14, 4 (2017). Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. S. Anstis. 1974. A chart demonstrating variations in acuity with retinal position. Vision research 14, 7 (1974).Google ScholarGoogle Scholar
  5. A. Bahill, M. Clark, and L. Stark. 1975. The main sequence, a tool for studying human eye movements. Mathematical Biosciences 24, 3--4 (1975).Google ScholarGoogle ScholarCross RefCross Ref
  6. D. Baldwin. 1981. Area of interest: Instantaneous field of view vision model. In Image Generation/Display Conference.Google ScholarGoogle Scholar
  7. R. Baloh, A. Sills, W. Kumley, and Vi. Honrubia. 1975. Quantitative measurement of saccade amplitude, duration, and velocity. Neurology 25, 11 (1975).Google ScholarGoogle Scholar
  8. S. Bharadwaj and C. Schor. 2005. Acceleration characteristics of human ocular accommodation. Vision Research 45, 1 (2005).Google ScholarGoogle Scholar
  9. M. Bukowski, P. Hennessy, B. Osman, and M. McGuire. 2013. The Skylanders SWAP Force Depth-of-Field Shader. In GPU Pro 4: Advanced Rendering Techniques.Google ScholarGoogle Scholar
  10. O. Cakmakci and J. Rolland. 2006. Head-worn displays: a review. Journal of display technology 2, 3 (2006).Google ScholarGoogle ScholarCross RefCross Ref
  11. F. Campbell and G. Westheimer. 1960. Dynamics of accommodation responses of the human eye. J. Physiol. 151, 2 (1960).Google ScholarGoogle ScholarCross RefCross Ref
  12. S. Cholewiak, G. Love, P. Srinivasan, R. Ng, and M. Banks. 2017. ChromaBlur: Rendering chromatic eye aberration improves accommodation and realism. ACM TOG 36, 6 (2017). Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. R. Cook, T. Porter, and L. Carpenter. 1984. Distributed Ray Tracing. In Proc. of SIGGRAPH. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Magic Leap Corportation. 2019a. Magic Leap One Creator Edition. https://www.magicleap.com/magic-leap-one. Accessed: 2019-01-12.Google ScholarGoogle Scholar
  15. nReal Corportation. 2019b. nReal Light. https://www.nreal.ai/. Accessed: 2019-01-12.Google ScholarGoogle Scholar
  16. D. Dunn, C. Tippets, K. Torell, P. Kellnhofer, K. Akşit, P. Didyk, K. Myszkowski, D. Luebke, and H. Fuchs. 2017. Wide Field Of View Varifocal Near-Eye Display Using See-Through Deformable Membrane Mirrors. IEEE TVCG 23, 4 (2017). Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. D. Elliott, K. Yang, and D. Whitaker. 1995. Visual acuity changes throughout adulthood in normal, healthy eyes: seeing beyond 6/6. Optometry and vis. science 72, 3 (1995).Google ScholarGoogle Scholar
  18. W. Fuhl, D. Geisler, T. Santini, T. Appel, W. Rosenstiel, and E. Kasneci. 2018. CBF: Circular Binary Features for Robust and Real-time Pupil Center Detection. In ACM Symposium on Eye Tracking Research & Applications. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. W. Fuhl, T. Kübler, K. Sippel, W. Rosenstiel, and E. Kasneci. 2015. Excuse: Robust pupil detection in real-world scenarios. In Computer Analysis of Images and Patterns.Google ScholarGoogle Scholar
  20. W. Fuhl, T. Santini, G. Kasneci, W. Rosenstiel, and E.Kasneci. 2017. PupilNet v2.0: Convolutional Neural Networks for CPU based real time Robust Pupil Detection. CoRR abs/1711.00112 (2017). http://arxiv.org/abs/1711.00112Google ScholarGoogle Scholar
  21. Y. Gu and G. Legge. 1987. Accommodation to stimuli in peripheral vision. JOSA A 4, 8 (1987).Google ScholarGoogle Scholar
  22. B. Guenter, M. Finch, S. Drucker, D. Tan, and J. Snyder. 2012. Foveated 3D Graphics. ACM TOG 31, 6 (2012). Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. P. Haeberli and K. Akeley. 1990. The Accumulation Buffer: Hardware Support for High-quality Rendering (Proc. of SIGGRAPH). Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. G. Heron, W. Charman, and C. Schor. 2001. Dynamics of the accommodation response to abrupt changes in target vergence as a function of age. Vision Res. 41, 4 (2001).Google ScholarGoogle Scholar
  25. M.-L. Hsieh and K.Y. Hsu. 2001. Grating detuning effect on holographic memory in photopolymers. Optical Engineering 40, 10 (2001).Google ScholarGoogle Scholar
  26. X. Hu and H. Hua. 2014. High-resolution optical see-through multi-focal-plane head-mounted display using freeform optics. Optics Express 22, 11 (2014).Google ScholarGoogle Scholar
  27. H. Hua. 2017. Enabling Focus Cues in Head-Mounted Displays. Proc. IEEE 105, 5 (2017).Google ScholarGoogle ScholarCross RefCross Ref
  28. H. Hua and B. Javidi. 2014. A 3D integral imaging optical see-through head-mounted display. Optics Express 22, 11 (2014).Google ScholarGoogle Scholar
  29. M. Ibbotson and S. Cloherty. 2009. Visual perception: saccadic omission, suppression or temporal masking? Current Biology 19, 12 (2009).Google ScholarGoogle Scholar
  30. C. Jang, K. Bang, G. Li, and B. Lee. 2018. Holographic near-eye display with expanded eye-box. In Proc. of SIGGRAPH Asia. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. C. Jang, K. Bang, S. Moon, J. Kim, S. Lee, and B. Lee. 2017. Retinal 3D: Augmented Reality Near-eye Display via Pupil-tracked Light Field Projection on Retina. In Proc. of SIGGRAPH Asia. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. J. Kim, M. Stengel, A. Majercik, S. De Mello, S. Laine, M. McGuire, and D. Luebke. 2019. NVGaze: Low-Latency, Near-Eye Gaze Estimation with an Anatomically-Informed Dataset. In Proc. of CHI.Google ScholarGoogle Scholar
  33. J. Kim, Q. Sun, F. Huang, L. Wei, D. Luebke, and A. Kaufman. 2017. Perceptual Studies for Foveated Light Field Displays. arXiv preprint arXiv:1708.06034 (2017).Google ScholarGoogle Scholar
  34. S.-B. Kim and J.-H. Park. 2018. Optical see-through Maxwellian near-to-eye display with an enlarged eyebox. Optics Letters 43, 4 (2018).Google ScholarGoogle ScholarCross RefCross Ref
  35. H. Kogelnik. 1969. Coupled wave theory for thick hologram gratings. Bell System Technical Journal 48, 9 (1969).Google ScholarGoogle ScholarCross RefCross Ref
  36. A. Koulieris, M.and Mantiuk R. Akşit, K.and Stengel, K. Mania, and C. Richardt. 2019. Near-Eye Display and Tracking Technologies for Virtual and Augmented Reality. In Computer Graphics Forum, Vol. 38.Google ScholarGoogle Scholar
  37. B. Kress and W. Cummings. 2017. Towards the Ultimate Mixed Reality Experience: HoloLens Display Architecture Choices. In SID Symp. Digest of Technical Papers.Google ScholarGoogle Scholar
  38. G. Lee, J. Hong, S. Hwang, S. Moon, H. Kang, S. Jeon, J. Kim, H.and Jeong, and B. Lee. 2018b. Metasurface eyepiece for augmented reality. Nature comm. 9, 1 (2018).Google ScholarGoogle Scholar
  39. J. S. Lee, Y. K. Kim, M. Y. Lee, and Y. H. Won. 2019. Enhanced see-through near-eye display using time-division multiplexing of a Maxwellian-view and holographic display. Optics Express 27, 2 (2019).Google ScholarGoogle Scholar
  40. S. Lee, J. Cho, B. Lee, Y. Jo, C. Jang, D. Kim, and B. Lee. 2018a. Foveated retinal optimization for see-through near-eye multi-layer displays. IEEE Access 6 (2018).Google ScholarGoogle Scholar
  41. S. Lee, Y. Jo, D. Yoo, J. Cho, D. Lee, and B. Lee. 2018c. TomoReal: Tomographic Displays. arXiv preprint arXiv:1804.04619 (2018).Google ScholarGoogle Scholar
  42. J. Lemley, A. Kar, A. Drimbarean, and P. Corcoran. 2018. Efficient CNN Implementation for Eye-Gaze Estimation on Low-Power/Low-Quality Consumer Imaging Systems. arXiv preprint arXiv:1806.10890 (2018).Google ScholarGoogle Scholar
  43. S. Liu, D. Cheng, and H. Hua. 2008. An optical see-through head mounted display with addressable focal planes. In Mixed and Augmented Reality. Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. S. Liu, H. Hua, and D. Cheng. 2010. A Novel Prototype for an Optical See-Through Head-Mounted Display with Addressable Focus Cues. IEEE TVCG 16, 3 (2010). Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. L. Loschky and G. Wolverton. 2007. How late can you update gaze-contingent multiresolutional displays without detection? ACM TOMM 3, 4 (2007). Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. A. Maimone, A. Georgiou, and J. Kollin. 2017. Holographic Near-eye Displays for Virtual and Augmented Reality. In Proc. of SIGGRAPH. Google ScholarGoogle ScholarDigital LibraryDigital Library
  47. A. Maimone, D. Lanman, K. Rathinavel, K. Keller, D. Luebke, and H. Fuchs. 2014. Pinlight Displays: Wide Field of View Augmented Reality Eyeglasses Using Defocused Point Light Sources. ACM Trans. Graph. 33, 4 (2014). Google ScholarGoogle ScholarDigital LibraryDigital Library
  48. M. Mansouryar, J. Steil, Y. Sugano, and A. Bulling. 2016. 3d gaze estimation from 2d pupil positions on monocular head-mounted eye trackers. In Proc. of the Symp. on Eye Tracking Research & Applications. Google ScholarGoogle ScholarDigital LibraryDigital Library
  49. E. Matin. 1974. Saccadic suppression: a review and an analysis. Psychological bulletin 81, 12 (1974).Google ScholarGoogle Scholar
  50. O. Mercier, Y. Sulai, K. Mackenzie, M. Zannoli, J. Hillis, D. Nowrouzezahrai, and D. Lanman. 2017. Fast Gaze-contingent Optimal Decompositions for Multifocal Displays. ACM TOG 36, 6 (2017). Google ScholarGoogle ScholarDigital LibraryDigital Library
  51. K. Miki, T. Nagamatsu, and D. Hansen. 2016. Implicit user calibration for gaze-tracking systems using kernel density estimation. In Proce. of the Symp. on Eye Tracking Research & Applications. Google ScholarGoogle ScholarDigital LibraryDigital Library
  52. G. Mlot, H. Bahmani, S. Wahl, and E. Kasneci. 2016. 3D Gaze Estimation using Eye Vergence.. In HEALTHINF. 125--131. Google ScholarGoogle ScholarDigital LibraryDigital Library
  53. R. Narain, R. Albert, A. Bulbul, Gr. Ward, M. Banks, and J. O'Brien. 2015. Optimal presentation of imagery with focus cues on multi-plane displays. ACM TOG 34, 4 (2015). Google ScholarGoogle ScholarDigital LibraryDigital Library
  54. S. Phillips, D. Shirachi, and L. Stark. 1972. Analysis of accommodative response times using histogram information. American Journal of Optometry 49, 5 (1972).Google ScholarGoogle ScholarCross RefCross Ref
  55. S. Reder. 1973. On-line monitoring of eye-position signals in contingent and noncontingent paradigms. Behavior Research Methods & Instrumentation 5, 2 (1973).Google ScholarGoogle Scholar
  56. R. Rodieck. 1998. The first steps in seeing. Sinauer Associates Sunderland, MA.Google ScholarGoogle Scholar
  57. J. Rolland, A. Yoshida, L. Davis, and J. Reif. 1998. High-resolution inset head-mounted display. Applied optics 37, 19 (1998).Google ScholarGoogle Scholar
  58. T. Santini, W. Fuhl, and E. Kasneci. 2017. CalibMe: Fast and Unsupervised Eye Tracker Calibration for Gaze-Based Pervasive Human-Computer Interaction. In Proc of CHI. Google ScholarGoogle ScholarDigital LibraryDigital Library
  59. K. Selgrad, C. Reintges, D. Penk, P. Wagner, and M. Stamminger. 2015. Real-time Depth of Field Using Multi-layer Filtering. In Proc of I3D. Google ScholarGoogle ScholarDigital LibraryDigital Library
  60. M. Shenker. 1987. Optical design criteria for binocular helmet-mounted displays. In Display System Optics.Google ScholarGoogle Scholar
  61. L. Shi, F. Huang, W. Lopes, W. Matusik, and D. Luebke. 2017. Near-eye Light Field Holographic Rendering with Spherical Waves for Wide Field of View Interactive 3D Computer Graphics. In Proc. of SIGGRAPH Asia. Google ScholarGoogle ScholarDigital LibraryDigital Library
  62. M. Shinya. 1994. Post-filtering for Depth of Field Simulation with Ray Distribution Buffer. In Proc. of Graphics Interface.Google ScholarGoogle Scholar
  63. T. Sousa. 2013. CryEngine3 Graphics Gems. SIGGRAPH Course: Advances in Real-Time Rendering Course.Google ScholarGoogle Scholar
  64. A Spooner. 1982. The trend towards area of interest in visual simulation technology. Technical Report. Naval Training Equipment Center Orlando FL.Google ScholarGoogle Scholar
  65. G. Tan, Y.-H. Lee, T. Zhan, J. Yang, S. Liu, D. Zhao, and S.-T. Wu. 2018. Foveated imaging for near-eye displays. Optics Express 26, 19 (2018).Google ScholarGoogle ScholarCross RefCross Ref
  66. L. Thibos, D. Still, and A. Bradley. 1996. Characterization of spatial aliasing and contrast sensitivity in peripheral vision. Vision research 36, 2 (1996).Google ScholarGoogle Scholar
  67. M. Tonsen, J. Steil, Y. Sugano, and A. Bulling. 2017. InvisibleEye: Mobile Eye Tracking Using Multiple Low-Resolution Cameras and Learning-Based Gaze Estimation. In Proc. Interact. Mob. Wearable Ubiquitous Technol. Google ScholarGoogle ScholarDigital LibraryDigital Library
  68. B. Wang, K. Ciuffreda, and T. Irish. 2006. Equiblur zones at the fovea and near retinal periphery. Vision Research 46, 21 (2006).Google ScholarGoogle Scholar
  69. L. Xiao, A. Kaplanyan, A.r Fix, M. Chapman, and D. Lanman. 2018. DeepFocus: learned image synthesis for computational displays. In Proc. of SIGGRAPH Asia. Google ScholarGoogle ScholarDigital LibraryDigital Library
  70. Y. Yang, H. Lin, Z. Yu, S. Paris, and Ji. Yu. 2016. Virtual DSLR: High Quality Dynamic Depth-of-Field Synthesis on Mobile Platforms. In Digital Phot. and Mob. Imaging.Google ScholarGoogle Scholar
  71. T. Zhan, Y. Lee, and S. Wu. 2018. High-resolution additive light field near-eye display by switchable Pancharatnam-Berry phase lenses. Optics Express 26, 4 (2018).Google ScholarGoogle Scholar

Index Terms

  1. Foveated AR: dynamically-foveated augmented reality display

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in

    Full Access

    • Published in

      cover image ACM Transactions on Graphics
      ACM Transactions on Graphics  Volume 38, Issue 4
      August 2019
      1480 pages
      ISSN:0730-0301
      EISSN:1557-7368
      DOI:10.1145/3306346
      Issue’s Table of Contents

      Copyright © 2019 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 12 July 2019
      Published in tog Volume 38, Issue 4

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader