skip to main content
research-article

Star-shaped metrics for mechanical metamaterial design

Published:12 July 2019Publication History
Skip Abstract Section

Abstract

We present a method for designing mechanical metamaterials based on the novel concept of Voronoi diagrams induced by star-shaped metrics. As one of its central advantages, our approach supports interpolation between arbitrary metrics. This capability opens up a rich space of structures with interesting aesthetics and a wide range of mechanical properties, including isotropic, tetragonal, orthotropic, as well as smoothly graded materials. We evaluate our method by creating large sets of example structures, provided as accompanying material. We validate the mechanical properties predicted by simulation through tensile tests on a set of physical prototypes.

References

  1. Erik Andreassen and Casper Schousboe Andreasen. 2014. How to Determine Composite Material Properties Using Numerical Homogenization. Computational Materials Science 83 (2014), 488--495.Google ScholarGoogle ScholarCross RefCross Ref
  2. Erik Andreassen, Boyan S. Lazarov, and Ole Sigmund. 2014. Design of manufacturable 3D extremal elastic microstructure. Mechanics of Materials 69, 1 (2014), 1--10.Google ScholarGoogle ScholarCross RefCross Ref
  3. Melvin Avrami. 1939. Kinetics of phase change. I General theory. The Journal of chemical physics 7, 12 (1939), 1103--1112.Google ScholarGoogle ScholarCross RefCross Ref
  4. Sahab Babaee, Jongmin Shim, James C. Weaver, Elizabeth R. Chen, Nikita Patel, and Katia Bertoldi. 2013. 3D Soft Metamaterials with Negative Poisson's Ratio. Advanced Materials 25, 36 (2013), 5044--5049.Google ScholarGoogle ScholarCross RefCross Ref
  5. Katia Bertoldi, Vincenzo Vitelli, Johan Christensen, and Martin van Hecke. 2017. Flexible mechanical metamaterials. Nature Reviews 2 (2017), 17066.Google ScholarGoogle Scholar
  6. Bernd Bickel, Moritz Bächer, Miguel A. Otaduy, Hyunho Richard Lee, Hanspeter Pfister, Markus Gross, and Wojciech Matusik. 2010. Design and Fabrication of Materials with Desired Deformation Behavior. ACM Trans. Graph. (Proc. SIGGRAPH) 29, 4, Article 63 (2010). Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. J. Blömer and K. Kohn. 2018. Voronoi Cells of Lattices with Respect to Arbitrary Norms. SIAM Journal on Applied Algebra and Geometry 2, 2 (2018), 314--338.Google ScholarGoogle ScholarCross RefCross Ref
  8. Weikai Chen, Xialong Zhang, Shiqing Xin, Yang Xia, Sylvain Lefebvre, and Wenping Wang. 2016. Synthesis of Filigrees for Digital Fabrication. ACM Trans. Graph. (Proc. SIGGRAPH) 35, 4 (2016). Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. A.G. Corbalan, M. Mazon, and T. Recio. 1996. Geometry of bisectors for strictly convex distances. Int. J. Comput. Geom. Appl. 06, 01 (1996), 45--58.Google ScholarGoogle ScholarCross RefCross Ref
  10. Corentin Coulais, Eial Teomy, Koen de Reus, Yair Shokef, and Martin van Hecke. 2016. Combinatorial design of textured mechanical metamaterials. Nature 535 (2016), 529--532.Google ScholarGoogle ScholarCross RefCross Ref
  11. Andrew D. Cramer, Vivien J. Challis, and Anthony P. Roberts. 2016. Microstructure interpolation for macroscopic design. Struct. Multidiscip. Opt. 53, 3 (2016), 489--500. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Géry de Saxcé and Claude Vallée. 2013. Invariant Measures of the Lack of Symmetry with Respect to the Symmetry Groups of 2D Elasticity Tensors. Journal of Elasticity 111, 1 (2013), 21--39.Google ScholarGoogle ScholarCross RefCross Ref
  13. Michel Deza and Mathieu Dutour Sikirić. 2015. Voronoi polytopes for polyhedral norms on lattices. Discrete Applied Mathematics 197 (2015), 42 -- 52. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Michel Marie Deza and Elena Deza. 2013. Voronoi Diagram Distances. Springer Berlin Heidelberg, Berlin, Heidelberg, 339--347.Google ScholarGoogle Scholar
  15. Zongliang Du, Xiao-Yi Zhou, Renato Picelli, and H Alicia Kim. 2018. Connecting Microstructures for Multiscale Topology Optimization With Connectivity Index Constraints. Journal of Mechanical Design 140, 11 (2018), 111417.Google ScholarGoogle ScholarCross RefCross Ref
  16. Jérémie Dumas, An Lu, Sylvain Lefebvre, Jun Wu, and Christian Dick. 2015. By-example Synthesis of Structurally Sound Patterns. ACM Trans. Graph. (Proc. SIGGRAPH) 34, 4, Article 137 (2015). Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Herbert Edelsbrunner and Ernst Peter Mücke. 1990. Simulation of simplicity: a technique to cope with degenerate cases in geometric algorithms. ACM Trans. Graph. 9, 1 (1990), 66--104. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Sandra Forte and Maurizio Vianello. 1996. Symmetry classes for elasticity tensors. Journal of Elasticity 43, 2 (01 May 1996), 81--108.Google ScholarGoogle ScholarCross RefCross Ref
  19. F. Fritsch and R. Carlson. 1980. Monotone Piecewise Cubic Interpolation. SIAM J. Numer. Anal. 17, 2 (1980), 238--246.Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Eric Garner, Helena Kolken, Charlie Wang, Amir Zadpoor, and Jun Wu. 2019. Compatibility in Microstructural Optimization for Additive Manufacturing. Additive Manufacturing 26 (2019), 65--75.Google ScholarGoogle ScholarCross RefCross Ref
  21. J. N. Grima and K. E. Evans. 2000. Auxetic behavior from rotating squares. Journal of Materials Science Letters 19, 17 (2000), 1563--1565.Google ScholarGoogle ScholarCross RefCross Ref
  22. Peter Gruber. 1974. Über kennzeichnende Eigenschaften von euklidischen Räumen und Ellipsoiden. I. Journal für die reine und Angewandte Mathematik 265 (1974), 61--83.Google ScholarGoogle Scholar
  23. Branko Grünbaum and G C Shephard. 1986. Tilings and Patterns. W. H. Freeman & Co., New York, NY, USA. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Behrooz Hassani and Ernest Hinton. 1998. A review of homogenization and topology optimization I-homogenization theory for media with periodic structure. Computers & Structures 69, 6 (1998), 707--717.Google ScholarGoogle ScholarCross RefCross Ref
  25. C. He, H. Martini, and S. Wu. 2011. On Bisectors for Convex Distance Functions. In Eight International Symposium on Voronoi Diagrams in Science and Engineering. 23--30. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Christian Icking, Rolf Klein, Ngoc-Minh Lé, and Lihong Ma. 1995. Convex distance functions in 3-space are different. Fundamenta Informaticae 22, 4 (1995), 331--352. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Christian Icking, Rolf Klein, Lihong Ma, Stefan Nickel, and Ansgar Weißler. 2001. On bisectors for different distance functions. Discrete Appl. Math. 109, 1 (2001), 139--161. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Alexandra Ion, Johannes Frohnhofen, Ludwig Wall, Robert Kovacs, Mirela Alistar, Jack Lindsay, Pedro Lopes, Hsiang-Ting Chen, and Patrick Baudisch. 2016. Metamaterial Mechanisms. In Proceedings of the 29th Annual Symposium on User Interface Software and Technology (UIST '16). 529--539. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Alexandra Ion, Robert Kovacs, Oliver S. Schneider, Pedro Lopes, and Patrick Baudisch. 2018. Metamaterial Textures. In Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems. Article 336, 336:1--336:12 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Craig S. Kaplan and David H. Salesin. 2000. Escherization. In Proceedings of the 27th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH '00). 499--510. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. H MA Kolken and AA Zadpoor. 2017. Auxetic mechanical metamaterials. RSC Advances 7, 9 (2017), 5111--5129.Google ScholarGoogle ScholarCross RefCross Ref
  32. Mina Konaković, Keenan Crane, Bailin Deng, Sofien Bouaziz, Daniel Piker, and Mark Pauly. 2016. Beyond Developable: Computational Design and Fabrication with Auxetic Materials. ACM Trans. Graph. (Proc. SIGGRAPH) 35, 4 (2016). Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Mina Konaković-Luković, Julian Panetta, Keenan Crane, and Mark Pauly. 2018. Rapid Deployment of Curved Surfaces via Programmable Auxetics. ACM Trans. Graph. 37, 4, Article 106 (2018). Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Roderic Lakes. 1987. Foam Structures with a Negative Poisson's Ratio. Science 235, 4792 (1987).Google ScholarGoogle Scholar
  35. Jianxing Liu and Yihui Zhang. 2018. Soft network materials with isotropic negative Poisson's ratios over large strains. Soft Matter 14 (2018), 693--703. Issue 5.Google ScholarGoogle ScholarCross RefCross Ref
  36. Lihong Ma. 2000. Bisectors and Voronoi diagrams for convex distance functions. Ph.D. Dissertation. Fernuniversität, Fachbereich Informatik.Google ScholarGoogle Scholar
  37. Luigi Malomo, Jesús Pérez, Emmanuel Iarussi, Nico Pietroni, Eder Miguel, Paolo Cignoni, and Bernd Bickel. 2018. FlexMaps: Computational Design of Flat Flexible Shells for Shaping 3D Objects. ACM Trans. Graph. (Proc. SIGGRAPH Asia) 37, 6, Article 241 (2018), 241:1--241:14 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Jonàs Martínez, Jérémie Dumas, and Sylvain Lefebvre. 2016. Procedural Voronoi Foams for Additive Manufacturing. ACM Trans. Graph. (Proc. SIGGRAPH) 35, 4 (2016). Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Jonàs Martínez, Jérémie Dumas, Sylvain Lefebvre, and Li-Yi Wei. 2015. Structure and Appearance Optimization for Controllable Shape Design. ACM Trans. Graph. (Proc. SIGGRAPH Asia) 34, 6 (2015). Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Jonàs Martínez, Samuel Hornus, Haichuan Song, and Sylvain Lefebvre. 2018. Polyhedral Voronoi Diagrams for Additive Manufacturing. ACM Trans. Graph. (Proc. SIGGRAPH) 37, 4, Article 129 (2018). Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. Jonàs Martínez, Haichuan Song, Jérémie Dumas, and Sylvain Lefebvre. 2017. Orthotropic k-nearest Foams for Additive Manufacturing. ACM Trans. Graph. (Proc. SIGGRAPH) 36, 4, Article 121 (2017). Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. H. Martini and K.J. Swanepoel. 2004. The geometry of Minkowski spaces: A survey. Part II. Expositiones Mathematicae 22, 2 (2004), 93 -- 144.Google ScholarGoogle Scholar
  43. Luke Mizzi, E.M. Mahdi, Kirill Titov, Ruben Gatt, Daphne Attard, Kenneth E. Evans, Joseph N. Grima, and Jin-Chong Tan. 2018. Mechanical metamaterials with star-shaped pores exhibiting negative and zero Poisson's ratio. Materials & Design 146 (2018), 28--37.Google ScholarGoogle ScholarCross RefCross Ref
  44. Julian Panetta, Abtin Rahimian, and Denis Zorin. 2017. Worst-case Stress Relief for Microstructures. ACM Trans. Graph. (Proc. SIGGRAPH) 36, 4 (2017). Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. Julian Panetta, Qingnan Zhou, Luigi Malomo, Nico Pietroni, Paolo Cignoni, and Denis Zorin. 2015. Elastic Textures for Additive Fabrication. ACM Trans. Graph. (Proc. SIGGRAPH) 34, 4, Article 135 (2015). Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. Christian Schumacher, Bernd Bickel, Jan Rys, Steve Marschner, Chiara Daraio, and Markus Gross. 2015. Microstructures to Control Elasticity in 3D Printing. ACM Trans. Graph. (Proc. SIGGRAPH) 34, 4, Article 136 (2015). Google ScholarGoogle ScholarDigital LibraryDigital Library
  47. Christian Schumacher, Steve Marschner, Markus Cross, and Bernhard Thomaszewski. 2018. Mechanical Characterization of Structured Sheet Materials. ACM Trans. Graph. (Proc. SIGGRAPH) 37, 4, Article 148 (2018). Google ScholarGoogle ScholarDigital LibraryDigital Library
  48. Christian Schumacher, Bernhard Thomaszewski, and Markus Gross. 2016. Stenciling: Designing Structurally-Sounds Surfaces with Decorative Patterns. Computer Graphics Forum 35, 5 (Aug. 2016), 101--110.Google ScholarGoogle ScholarDigital LibraryDigital Library
  49. Ole Sigmund. 1997. On the Design of Compliant Mechanisms Using Topology Optimization. Mechanics of Structures and Machines 25, 4 (1997), 493--524.Google ScholarGoogle ScholarCross RefCross Ref
  50. TCT Ting and Tungyang Chen. 2005. Poisson's ratio for anisotropic elastic materials can have no bounds. Q. J. Mech. Appl. Math 58, 1 (2005), 73--82.Google ScholarGoogle ScholarCross RefCross Ref
  51. Jussi Väisälä. 2013. Slopes of bisectors in normed planes. Beiträge zur Algebra und Geometrie 54, 1 (2013), 225--235.Google ScholarGoogle ScholarCross RefCross Ref
  52. F. Wang, O. Sigmund, and J.S. Jensen. 2014. Design of materials with prescribed nonlinear properties. J. Mech. Phys. Solids 69, 4 (2014), 156--174.Google ScholarGoogle ScholarCross RefCross Ref
  53. Yiqiang Wang, Feifei Chen, and Michael Yu Wang. 2017. Concurrent design with connectable graded microstructures. Comput. Methods Appl. Mech. Eng. 317 (2017), 84--101.Google ScholarGoogle ScholarCross RefCross Ref
  54. Yiqiang Wang, Lei Zhang, Stephen Daynes, Hongying Zhang, Stefanie Feih, and Michael Yu Wang. 2018. Design of graded lattice structure with optimized mesostructures for additive manufacturing. Materials & Design 142 (2018), 114 -- 123.Google ScholarGoogle ScholarCross RefCross Ref
  55. Hongyi Xu, Yijing Li, Yong Chen, and Jernej Barbič. 2015. Interactive Material Design Using Model Reduction. ACM Trans. Graph. 34, 2 (2015), 18:1--18:14. Google ScholarGoogle ScholarDigital LibraryDigital Library
  56. Rhaleb Zayer, Daniel Mlakar, Markus Steinberger, and Hans-Peter Seidel. 2018. Layered Fields for Natural Tessellations on Surfaces. ACM Trans. Graph. (Proc. SIGGRAPH Asia) 37, 6, Article 264 (2018). Google ScholarGoogle ScholarDigital LibraryDigital Library
  57. Jonas Zehnder, Stelian Coros, and Bernhard Thomaszewski. 2016. Designing Structurally-sound Ornamental Curve Networks. ACM Trans. Graph. (Proc. SIGGRAPH) 35, 4, Article 99 (2016). Google ScholarGoogle ScholarDigital LibraryDigital Library
  58. Yan Zhang, Hao Li, Mi Xiao, Liang Gao, Sheng Chu, and Jinhao Zhang. 2018. Concurrent topology optimization for cellular structures with nonuniform microstructures based on the Kriging metamodel. Struct. Multidiscip. Opt. (2018). Google ScholarGoogle ScholarDigital LibraryDigital Library
  59. Shiwei Zhou and Qing Li. 2008. Design of graded two-phase microstructures for tailored elasticity gradients. J. Mater. Sci. 43, 15 (2008), 5157.Google ScholarGoogle ScholarCross RefCross Ref
  60. Bo Zhu, Mélina Skouras, Desai Chen, and Wojciech Matusik. 2017. Two-Scale Topology Optimization with Microstructures. ACM Trans. Graph. 36, 4 (2017).Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Star-shaped metrics for mechanical metamaterial design

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in

    Full Access

    • Published in

      cover image ACM Transactions on Graphics
      ACM Transactions on Graphics  Volume 38, Issue 4
      August 2019
      1480 pages
      ISSN:0730-0301
      EISSN:1557-7368
      DOI:10.1145/3306346
      Issue’s Table of Contents

      Copyright © 2019 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 12 July 2019
      Published in tog Volume 38, Issue 4

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader