Abstract
We present a method for designing mechanical metamaterials based on the novel concept of Voronoi diagrams induced by star-shaped metrics. As one of its central advantages, our approach supports interpolation between arbitrary metrics. This capability opens up a rich space of structures with interesting aesthetics and a wide range of mechanical properties, including isotropic, tetragonal, orthotropic, as well as smoothly graded materials. We evaluate our method by creating large sets of example structures, provided as accompanying material. We validate the mechanical properties predicted by simulation through tensile tests on a set of physical prototypes.
- Erik Andreassen and Casper Schousboe Andreasen. 2014. How to Determine Composite Material Properties Using Numerical Homogenization. Computational Materials Science 83 (2014), 488--495.Google Scholar
Cross Ref
- Erik Andreassen, Boyan S. Lazarov, and Ole Sigmund. 2014. Design of manufacturable 3D extremal elastic microstructure. Mechanics of Materials 69, 1 (2014), 1--10.Google Scholar
Cross Ref
- Melvin Avrami. 1939. Kinetics of phase change. I General theory. The Journal of chemical physics 7, 12 (1939), 1103--1112.Google Scholar
Cross Ref
- Sahab Babaee, Jongmin Shim, James C. Weaver, Elizabeth R. Chen, Nikita Patel, and Katia Bertoldi. 2013. 3D Soft Metamaterials with Negative Poisson's Ratio. Advanced Materials 25, 36 (2013), 5044--5049.Google Scholar
Cross Ref
- Katia Bertoldi, Vincenzo Vitelli, Johan Christensen, and Martin van Hecke. 2017. Flexible mechanical metamaterials. Nature Reviews 2 (2017), 17066.Google Scholar
- Bernd Bickel, Moritz Bächer, Miguel A. Otaduy, Hyunho Richard Lee, Hanspeter Pfister, Markus Gross, and Wojciech Matusik. 2010. Design and Fabrication of Materials with Desired Deformation Behavior. ACM Trans. Graph. (Proc. SIGGRAPH) 29, 4, Article 63 (2010). Google Scholar
Digital Library
- J. Blömer and K. Kohn. 2018. Voronoi Cells of Lattices with Respect to Arbitrary Norms. SIAM Journal on Applied Algebra and Geometry 2, 2 (2018), 314--338.Google Scholar
Cross Ref
- Weikai Chen, Xialong Zhang, Shiqing Xin, Yang Xia, Sylvain Lefebvre, and Wenping Wang. 2016. Synthesis of Filigrees for Digital Fabrication. ACM Trans. Graph. (Proc. SIGGRAPH) 35, 4 (2016). Google Scholar
Digital Library
- A.G. Corbalan, M. Mazon, and T. Recio. 1996. Geometry of bisectors for strictly convex distances. Int. J. Comput. Geom. Appl. 06, 01 (1996), 45--58.Google Scholar
Cross Ref
- Corentin Coulais, Eial Teomy, Koen de Reus, Yair Shokef, and Martin van Hecke. 2016. Combinatorial design of textured mechanical metamaterials. Nature 535 (2016), 529--532.Google Scholar
Cross Ref
- Andrew D. Cramer, Vivien J. Challis, and Anthony P. Roberts. 2016. Microstructure interpolation for macroscopic design. Struct. Multidiscip. Opt. 53, 3 (2016), 489--500. Google Scholar
Digital Library
- Géry de Saxcé and Claude Vallée. 2013. Invariant Measures of the Lack of Symmetry with Respect to the Symmetry Groups of 2D Elasticity Tensors. Journal of Elasticity 111, 1 (2013), 21--39.Google Scholar
Cross Ref
- Michel Deza and Mathieu Dutour Sikirić. 2015. Voronoi polytopes for polyhedral norms on lattices. Discrete Applied Mathematics 197 (2015), 42 -- 52. Google Scholar
Digital Library
- Michel Marie Deza and Elena Deza. 2013. Voronoi Diagram Distances. Springer Berlin Heidelberg, Berlin, Heidelberg, 339--347.Google Scholar
- Zongliang Du, Xiao-Yi Zhou, Renato Picelli, and H Alicia Kim. 2018. Connecting Microstructures for Multiscale Topology Optimization With Connectivity Index Constraints. Journal of Mechanical Design 140, 11 (2018), 111417.Google Scholar
Cross Ref
- Jérémie Dumas, An Lu, Sylvain Lefebvre, Jun Wu, and Christian Dick. 2015. By-example Synthesis of Structurally Sound Patterns. ACM Trans. Graph. (Proc. SIGGRAPH) 34, 4, Article 137 (2015). Google Scholar
Digital Library
- Herbert Edelsbrunner and Ernst Peter Mücke. 1990. Simulation of simplicity: a technique to cope with degenerate cases in geometric algorithms. ACM Trans. Graph. 9, 1 (1990), 66--104. Google Scholar
Digital Library
- Sandra Forte and Maurizio Vianello. 1996. Symmetry classes for elasticity tensors. Journal of Elasticity 43, 2 (01 May 1996), 81--108.Google Scholar
Cross Ref
- F. Fritsch and R. Carlson. 1980. Monotone Piecewise Cubic Interpolation. SIAM J. Numer. Anal. 17, 2 (1980), 238--246.Google Scholar
Digital Library
- Eric Garner, Helena Kolken, Charlie Wang, Amir Zadpoor, and Jun Wu. 2019. Compatibility in Microstructural Optimization for Additive Manufacturing. Additive Manufacturing 26 (2019), 65--75.Google Scholar
Cross Ref
- J. N. Grima and K. E. Evans. 2000. Auxetic behavior from rotating squares. Journal of Materials Science Letters 19, 17 (2000), 1563--1565.Google Scholar
Cross Ref
- Peter Gruber. 1974. Über kennzeichnende Eigenschaften von euklidischen Räumen und Ellipsoiden. I. Journal für die reine und Angewandte Mathematik 265 (1974), 61--83.Google Scholar
- Branko Grünbaum and G C Shephard. 1986. Tilings and Patterns. W. H. Freeman & Co., New York, NY, USA. Google Scholar
Digital Library
- Behrooz Hassani and Ernest Hinton. 1998. A review of homogenization and topology optimization I-homogenization theory for media with periodic structure. Computers & Structures 69, 6 (1998), 707--717.Google Scholar
Cross Ref
- C. He, H. Martini, and S. Wu. 2011. On Bisectors for Convex Distance Functions. In Eight International Symposium on Voronoi Diagrams in Science and Engineering. 23--30. Google Scholar
Digital Library
- Christian Icking, Rolf Klein, Ngoc-Minh Lé, and Lihong Ma. 1995. Convex distance functions in 3-space are different. Fundamenta Informaticae 22, 4 (1995), 331--352. Google Scholar
Digital Library
- Christian Icking, Rolf Klein, Lihong Ma, Stefan Nickel, and Ansgar Weißler. 2001. On bisectors for different distance functions. Discrete Appl. Math. 109, 1 (2001), 139--161. Google Scholar
Digital Library
- Alexandra Ion, Johannes Frohnhofen, Ludwig Wall, Robert Kovacs, Mirela Alistar, Jack Lindsay, Pedro Lopes, Hsiang-Ting Chen, and Patrick Baudisch. 2016. Metamaterial Mechanisms. In Proceedings of the 29th Annual Symposium on User Interface Software and Technology (UIST '16). 529--539. Google Scholar
Digital Library
- Alexandra Ion, Robert Kovacs, Oliver S. Schneider, Pedro Lopes, and Patrick Baudisch. 2018. Metamaterial Textures. In Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems. Article 336, 336:1--336:12 pages. Google Scholar
Digital Library
- Craig S. Kaplan and David H. Salesin. 2000. Escherization. In Proceedings of the 27th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH '00). 499--510. Google Scholar
Digital Library
- H MA Kolken and AA Zadpoor. 2017. Auxetic mechanical metamaterials. RSC Advances 7, 9 (2017), 5111--5129.Google Scholar
Cross Ref
- Mina Konaković, Keenan Crane, Bailin Deng, Sofien Bouaziz, Daniel Piker, and Mark Pauly. 2016. Beyond Developable: Computational Design and Fabrication with Auxetic Materials. ACM Trans. Graph. (Proc. SIGGRAPH) 35, 4 (2016). Google Scholar
Digital Library
- Mina Konaković-Luković, Julian Panetta, Keenan Crane, and Mark Pauly. 2018. Rapid Deployment of Curved Surfaces via Programmable Auxetics. ACM Trans. Graph. 37, 4, Article 106 (2018). Google Scholar
Digital Library
- Roderic Lakes. 1987. Foam Structures with a Negative Poisson's Ratio. Science 235, 4792 (1987).Google Scholar
- Jianxing Liu and Yihui Zhang. 2018. Soft network materials with isotropic negative Poisson's ratios over large strains. Soft Matter 14 (2018), 693--703. Issue 5.Google Scholar
Cross Ref
- Lihong Ma. 2000. Bisectors and Voronoi diagrams for convex distance functions. Ph.D. Dissertation. Fernuniversität, Fachbereich Informatik.Google Scholar
- Luigi Malomo, Jesús Pérez, Emmanuel Iarussi, Nico Pietroni, Eder Miguel, Paolo Cignoni, and Bernd Bickel. 2018. FlexMaps: Computational Design of Flat Flexible Shells for Shaping 3D Objects. ACM Trans. Graph. (Proc. SIGGRAPH Asia) 37, 6, Article 241 (2018), 241:1--241:14 pages. Google Scholar
Digital Library
- Jonàs Martínez, Jérémie Dumas, and Sylvain Lefebvre. 2016. Procedural Voronoi Foams for Additive Manufacturing. ACM Trans. Graph. (Proc. SIGGRAPH) 35, 4 (2016). Google Scholar
Digital Library
- Jonàs Martínez, Jérémie Dumas, Sylvain Lefebvre, and Li-Yi Wei. 2015. Structure and Appearance Optimization for Controllable Shape Design. ACM Trans. Graph. (Proc. SIGGRAPH Asia) 34, 6 (2015). Google Scholar
Digital Library
- Jonàs Martínez, Samuel Hornus, Haichuan Song, and Sylvain Lefebvre. 2018. Polyhedral Voronoi Diagrams for Additive Manufacturing. ACM Trans. Graph. (Proc. SIGGRAPH) 37, 4, Article 129 (2018). Google Scholar
Digital Library
- Jonàs Martínez, Haichuan Song, Jérémie Dumas, and Sylvain Lefebvre. 2017. Orthotropic k-nearest Foams for Additive Manufacturing. ACM Trans. Graph. (Proc. SIGGRAPH) 36, 4, Article 121 (2017). Google Scholar
Digital Library
- H. Martini and K.J. Swanepoel. 2004. The geometry of Minkowski spaces: A survey. Part II. Expositiones Mathematicae 22, 2 (2004), 93 -- 144.Google Scholar
- Luke Mizzi, E.M. Mahdi, Kirill Titov, Ruben Gatt, Daphne Attard, Kenneth E. Evans, Joseph N. Grima, and Jin-Chong Tan. 2018. Mechanical metamaterials with star-shaped pores exhibiting negative and zero Poisson's ratio. Materials & Design 146 (2018), 28--37.Google Scholar
Cross Ref
- Julian Panetta, Abtin Rahimian, and Denis Zorin. 2017. Worst-case Stress Relief for Microstructures. ACM Trans. Graph. (Proc. SIGGRAPH) 36, 4 (2017). Google Scholar
Digital Library
- Julian Panetta, Qingnan Zhou, Luigi Malomo, Nico Pietroni, Paolo Cignoni, and Denis Zorin. 2015. Elastic Textures for Additive Fabrication. ACM Trans. Graph. (Proc. SIGGRAPH) 34, 4, Article 135 (2015). Google Scholar
Digital Library
- Christian Schumacher, Bernd Bickel, Jan Rys, Steve Marschner, Chiara Daraio, and Markus Gross. 2015. Microstructures to Control Elasticity in 3D Printing. ACM Trans. Graph. (Proc. SIGGRAPH) 34, 4, Article 136 (2015). Google Scholar
Digital Library
- Christian Schumacher, Steve Marschner, Markus Cross, and Bernhard Thomaszewski. 2018. Mechanical Characterization of Structured Sheet Materials. ACM Trans. Graph. (Proc. SIGGRAPH) 37, 4, Article 148 (2018). Google Scholar
Digital Library
- Christian Schumacher, Bernhard Thomaszewski, and Markus Gross. 2016. Stenciling: Designing Structurally-Sounds Surfaces with Decorative Patterns. Computer Graphics Forum 35, 5 (Aug. 2016), 101--110.Google Scholar
Digital Library
- Ole Sigmund. 1997. On the Design of Compliant Mechanisms Using Topology Optimization. Mechanics of Structures and Machines 25, 4 (1997), 493--524.Google Scholar
Cross Ref
- TCT Ting and Tungyang Chen. 2005. Poisson's ratio for anisotropic elastic materials can have no bounds. Q. J. Mech. Appl. Math 58, 1 (2005), 73--82.Google Scholar
Cross Ref
- Jussi Väisälä. 2013. Slopes of bisectors in normed planes. Beiträge zur Algebra und Geometrie 54, 1 (2013), 225--235.Google Scholar
Cross Ref
- F. Wang, O. Sigmund, and J.S. Jensen. 2014. Design of materials with prescribed nonlinear properties. J. Mech. Phys. Solids 69, 4 (2014), 156--174.Google Scholar
Cross Ref
- Yiqiang Wang, Feifei Chen, and Michael Yu Wang. 2017. Concurrent design with connectable graded microstructures. Comput. Methods Appl. Mech. Eng. 317 (2017), 84--101.Google Scholar
Cross Ref
- Yiqiang Wang, Lei Zhang, Stephen Daynes, Hongying Zhang, Stefanie Feih, and Michael Yu Wang. 2018. Design of graded lattice structure with optimized mesostructures for additive manufacturing. Materials & Design 142 (2018), 114 -- 123.Google Scholar
Cross Ref
- Hongyi Xu, Yijing Li, Yong Chen, and Jernej Barbič. 2015. Interactive Material Design Using Model Reduction. ACM Trans. Graph. 34, 2 (2015), 18:1--18:14. Google Scholar
Digital Library
- Rhaleb Zayer, Daniel Mlakar, Markus Steinberger, and Hans-Peter Seidel. 2018. Layered Fields for Natural Tessellations on Surfaces. ACM Trans. Graph. (Proc. SIGGRAPH Asia) 37, 6, Article 264 (2018). Google Scholar
Digital Library
- Jonas Zehnder, Stelian Coros, and Bernhard Thomaszewski. 2016. Designing Structurally-sound Ornamental Curve Networks. ACM Trans. Graph. (Proc. SIGGRAPH) 35, 4, Article 99 (2016). Google Scholar
Digital Library
- Yan Zhang, Hao Li, Mi Xiao, Liang Gao, Sheng Chu, and Jinhao Zhang. 2018. Concurrent topology optimization for cellular structures with nonuniform microstructures based on the Kriging metamodel. Struct. Multidiscip. Opt. (2018). Google Scholar
Digital Library
- Shiwei Zhou and Qing Li. 2008. Design of graded two-phase microstructures for tailored elasticity gradients. J. Mater. Sci. 43, 15 (2008), 5157.Google Scholar
Cross Ref
- Bo Zhu, Mélina Skouras, Desai Chen, and Wojciech Matusik. 2017. Two-Scale Topology Optimization with Microstructures. ACM Trans. Graph. 36, 4 (2017).Google Scholar
Digital Library
Index Terms
Star-shaped metrics for mechanical metamaterial design
Recommendations
Design of buckling-induced mechanical metamaterials for energy absorption using topology optimization
A novel design concept for buckling-induced mechanical metamaterials for energy absorption is presented. The force-displacement curves of the mechanical metamaterials are analyzed according to the curves of their unit cells, and the energy-absorbing ...
Rectangular Microstrip Patch Antenna with "Pentagonal Rings" Shaped Metamaterial Cover
CSNT '12: Proceedings of the 2012 International Conference on Communication Systems and Network TechnologiesA narrow band micro strip patch antenna with "Pentagonal Rings" shaped metamaterial cover is proposed and analyzed at a height of 3.2mm from the ground plane. The antenna along with the proposed metamaterial cover is designed to resonate at 2.31GHz ...
Metamaterial-Based Electrically Small Wide Band L-Shaped Monopole Antenna
ACCT '15: Proceedings of the 2015 Fifth International Conference on Advanced Computing & Communication TechnologiesA wide band metamaterial based electrically small Lshapedmonopole antenna is proposed for the application of Wimax and Wifi. It is easy to fabricate due to planar and compact structure. The coplanar waveguide (CPW) feed is used to provide better ...





Comments