skip to main content
research-article
Open Access

Optimal transport-based polar interpolation of directional fields

Published:12 July 2019Publication History
Skip Abstract Section

Abstract

We propose an algorithm that interpolates between vector and frame fields on triangulated surfaces, designed to complement field design methods in geometry processing and simulation. Our algorithm is based on a polar construction, leveraging a conservation law from the Hopf-Poincaré theorem to match singular points using ideas from optimal transport; the remaining detail of the field is interpolated using straightforward machinery. Our model is designed with topology in mind, sliding singular points along the surface rather than having them appear and disappear, and it caters to all surface topologies, including boundary and generator loops.

Skip Supplemental Material Section

Supplemental Material

a88-solomon.mp4
papers_352.mp4

References

  1. Noam Aigerman and Yaron Lipman. 2016. Hyperbolic orbifold Tutte embeddings. ACM Trans. Graph. 35, 6 (2016), 217--1. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Grégoire Allaire. 2007. Numerical Analysis and Optimization: An Introduction to Mathematical Modelling and Numerical Simulation. Oxford University Press.Google ScholarGoogle Scholar
  3. Alexis Angelidis and Fabrice Neyret. 2005. Simulation of smoke based on vortex filament primitives. In Proc. Symposium on Computer Animation. ACM, 87--96. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Mirela Ben-Chen, Craig Gotsman, and Guy Bunin. 2008. Conformal flattening by curvature prescription and metric scaling. In Computer Graphics Forum, Vol. 27. Wiley Online Library, 449--458.Google ScholarGoogle Scholar
  5. David Bommes, Henrik Zimmer, and Leif Kobbelt. 2009. Mixed-integer quadrangulation. In ACM Transactions On Graphics (TOG), Vol. 28. ACM, 77. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Keenan Crane, Fernando De Goes, Mathieu Desbrun, and Peter Schröder. 2013. Digital geometry processing with discrete exterior calculus. In ACM SIGGRAPH 2013 Courses. ACM, 7. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Keenan Crane, Mathieu Desbrun, and Peter Schröder. 2010. Trivial connections on discrete surfaces. In Computer Graphics Forum, Vol. 29. Wiley Online Library, 1525--1533.Google ScholarGoogle Scholar
  8. Fernando de Goes and Keenan Crane. 2010. Trivial connections on discrete surfaces revisited: A simplified algorithm for simply-connected surfaces. Technical Report.Google ScholarGoogle Scholar
  9. Stefan de Vries. 2016. Modeling sediment transport pathways in the mouth of the Scheldt estuary. Master's thesis. University of Twente.Google ScholarGoogle Scholar
  10. Olga Diamanti, Amir Vaxman, Daniele Panozzo, and Olga Sorkine-Hornung. 2014. Designing N-PolyVector fields with complex polynomials. In Computer Graphics Forum, Vol. 33. Wiley Online Library, 1--11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Nahum Farchi and Mirela Ben-Chen. 2018. Integer-only cross field computation. ACM Transactions on Graphics (TOG) 37, 4 (2018), 91. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Simon Fiedler. 2018. Flip Subframe Interpolation. https://vimeo.com/251487780Google ScholarGoogle Scholar
  13. Christoph Garth, Xavier Tricoche, and Gerik Scheuermann. 2004. Tracking of vector field singularities in unstructured 3D time-dependent datasets. In Proceedings of the Conference on Visualization. IEEE Computer Society, 329--336. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Guangfeng Ji and Han-Wei Shen. 2006. Feature tracking using earth mover's distance and global optimization. In Pacific Graphics, Vol. 2.Google ScholarGoogle Scholar
  15. Felix Kälberer, Matthias Nieser, and Konrad Polthier. 2007. Quadcover: surface parameterization using branched coverings. In Computer Graphics Forum, Vol. 26. Wiley Online Library, 375--384.Google ScholarGoogle Scholar
  16. Ron Kimmel and James A Sethian. 1998. Computing geodesic paths on manifolds. Proceedings of the National Academy of Sciences 95, 15 (1998), 8431--8435.Google ScholarGoogle ScholarCross RefCross Ref
  17. Felix Knöppel, Keenan Crane, Ulrich Pinkall, and Peter Schröder. 2013. Globally optimal direction fields. ACM Transactions on Graphics (TOG) 32, 4 (2013), 59. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Hugo Lavenant, Sebastian Claici, Edward Chien, and Justin Solomon. 2018. Dynamical Optimal Transport on Discrete Surfaces. ACM Transactions on Graphics (TOG) 37, 6 (Dec. 2018), 250:1--250:16. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Bruno Lévy. 2015. A numerical algorithm for L<sub>2</sub> semi-discrete optimal transport in 3D. ESAIM: Mathematical Modelling and Numerical Analysis 49, 6 (2015), 1693--1715.Google ScholarGoogle ScholarCross RefCross Ref
  20. Bruno Lévy and Erica L Schwindt. 2018. Notions of optimal transport theory and how to implement them on a computer. Computers & Graphics 72 (2018), 135--148.Google ScholarGoogle ScholarCross RefCross Ref
  21. Wan-Chiu Li, Bruno Vallet, Nicolas Ray, and Bruno Levy. 2006. Representing higher-order singularities in vector fields on piecewise linear surfaces. IEEE Transactions on Visualization and Computer Graphics 12, 5 (2006). Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Heng Liu, Paul Zhang, Edward Chien, Justin Solomon, and David Bommes. 2018. Singularity-constrained octahedral fields for hexahedral meshing. ACM Transactions on Graphics (TOG) 37, 4 (2018), 93. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Quentin Mérigot. 2011. A multiscale approach to optimal transport. In Computer Graphics Forum, Vol. 30. Wiley Online Library, 1583--1592.Google ScholarGoogle Scholar
  24. MOSEK. 2017. The MOSEK optimization toolbox for MATLAB manual (Version 8.1). http://docs.mosek.com/8.1/toolbox/index.htmlGoogle ScholarGoogle Scholar
  25. Jonathan Palacios and Eugene Zhang. 2007. Rotational symmetry field design on surfaces. In ACM Transactions on Graphics (TOG), Vol. 26. ACM, 55:1--55:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Gabriel Peyré, Lénaïc Chizat, François-Xavier Vialard, and Justin Solomon. 2017. Quantum entropic regularization of matrix-valued optimal transport. European Journal of Applied Mathematics (2017), 1--24.Google ScholarGoogle Scholar
  27. Gabriel Peyré, Marco Cuturi, et al. 2019. Computational optimal transport. Foundations and Trends in Machine Learning 11, 5--6 (2019), 355--607.Google ScholarGoogle ScholarCross RefCross Ref
  28. Konstantin Poelke and Konrad Polthier. 2016. Boundary-aware Hodge decompositions for piecewise constant vector fields. Computer-Aided Design 78 (2016), 126--136. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Konrad Polthier and Markus Schmies. 1998. Straightest Geodesics on Polyhedral Surfaces. Springer Berlin Heidelberg, 135--150.Google ScholarGoogle Scholar
  30. Nicolas Ray, Wan Chiu Li, Bruno Lévy, Alla Sheffer, and Pierre Alliez. 2006. Periodic global parameterization. ACM Transactions on Graphics (TOG) 25, 4 (2006), 1460--1485. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Nicolas Ray, Bruno Vallet, Laurent Alonso, and Bruno Levy. 2009. Geometry-aware direction field processing. ACM Transactions on Graphics (TOG) 29, 1 (2009), 1. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Nicolas Ray, Bruno Vallet, Wan Chiu Li, and Bruno Lévy. 2008. N-symmetry direction field design. ACM Transactions on Graphics (TOG) 27, 2 (2008), 10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Filippo Santambrogio. 2015. Optimal transport for applied mathematicians. Birkäuser, NY (2015), 99--102.Google ScholarGoogle Scholar
  34. Syuhei Sato, Yoshinori Dobashi, and Tomoyuki Nishita. 2018. Editing Fluid Animation Using Flow Interpolation. ACM Transactions on Graphics (TOG) 37, 5 (2018), 173. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Syuhei Sato, Yoshinori Dobashi, Yonghao Yue, Kei Iwasaki, and Tomoyuki Nishita. 2015. Incompressibility-preserving deformation for fluid flows using vector potentials. The Visual Computer 31, 6--8 (2015), 959--965. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. MHBM Shariff. 1995. A constrained conjugate gradient method and the solution of linear equations. Computers & Mathematics with Applications 30, 11 (1995), 25--37.Google ScholarGoogle ScholarCross RefCross Ref
  37. Amit Singer. 2011. Angular synchronization by eigenvectors and semidefinite programming. Applied and Computational Harmonic Analysis 30, 1 (2011), 20.Google ScholarGoogle ScholarCross RefCross Ref
  38. Maxime Soler, Melanie Plainchault, Bruno Conche, and Julien Tierny. 2018. Lifted Wasserstein Matcher for Fast and Robust Topology Tracking. Proc. IEEE Symposium on Large Data Analysis and Visualization (2018).Google ScholarGoogle ScholarCross RefCross Ref
  39. Yousuf Soliman, Dejan Slepčev, and Keenan Crane. 2018. Optimal cone singularities for conformal flattening. ACM Transactions on Graphics (TOG) 37, 4 (2018), 105. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Justin Solomon. 2018. Optimal Transport on Discrete Domains. Proceedings of Symposia in Pure Mathematics (2018).Google ScholarGoogle Scholar
  41. Justin Solomon, Fernando De Goes, Gabriel Peyré, Marco Cuturi, Adrian Butscher, Andy Nguyen, Tao Du, and Leonidas Guibas. 2015. Convolutional Wasserstein distances: Efficient optimal transportation on geometric domains. ACM Transactions on Graphics (TOG) 34, 4 (2015), 66. Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. Justin Solomon, Raif Rustamov, Leonidas Guibas, and Adrian Butscher. 2014. Earth mover's distances on discrete surfaces. ACM Transactions on Graphics (TOG) 33, 4 (2014), 67. Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. Yiying Tong, Pierre Alliez, David Cohen-Steiner, and Mathieu Desbrun. 2006. Designing quadrangulations with discrete harmonic forms. In Eurographics Symposium on Geometry Processing. 1--10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. Xavier Tricoche, Gerik Scheuermann, and Hans Hagen. 2000. A topology simplification method for 2D vector fields. In Visualization. IEEE, 359--366. Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. Amir Vaxman et al. 2017. Directional: directional field synthesis, design, and processing. https://github.com/avaxman/Directional.Google ScholarGoogle Scholar
  46. Amir Vaxman, Marcel Campen, Olga Diamanti, Daniele Panozzo, David Bommes, Klaus Hildebrandt, and Mirela Ben-Chen. 2016. Directional field synthesis, design, and processing. In Computer Graphics Forum, Vol. 35. Wiley Online Library, 545--572.Google ScholarGoogle Scholar
  47. Cédric Villani. 2003. Topics in optimal transportation. Number 58. American Mathematical Soc.Google ScholarGoogle Scholar

Index Terms

  1. Optimal transport-based polar interpolation of directional fields

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in

      Full Access

      • Published in

        cover image ACM Transactions on Graphics
        ACM Transactions on Graphics  Volume 38, Issue 4
        August 2019
        1480 pages
        ISSN:0730-0301
        EISSN:1557-7368
        DOI:10.1145/3306346
        Issue’s Table of Contents

        Copyright © 2019 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 12 July 2019
        Published in tog Volume 38, Issue 4

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader