skip to main content
research-article
Public Access

TriWild: robust triangulation with curve constraints

Published:12 July 2019Publication History
Skip Abstract Section

Abstract

We propose a robust 2D meshing algorithm, TriWild, to generate curved triangles reproducing smooth feature curves, leading to coarse meshes designed to match the simulation requirements necessary by applications and avoiding the geometrical errors introduced by linear meshes. The robustness and effectiveness of our technique are demonstrated by batch processing an SVG collection of 20k images, and by comparing our results against state of the art linear and curvilinear meshing algorithms. We demonstrate for our algorithm the practical utility of computing diffusion curves, fluid simulations, elastic deformations, and shape inflation on complex 2D geometries.

Skip Supplemental Material Section

Supplemental Material

papers_374.mp4

References

  1. 2015 Nektar++: An open-source spectral/hp element framework. Computer Physics Communications 192 (2015), 205 -- 219.Google ScholarGoogle ScholarCross RefCross Ref
  2. 2018 Curvilinear mesh generation using a variational framework. Computer-Aided Design 103 (2018), 73 -- 91. 25th International Meshing Roundtable Special Issue: Advances in Mesh Generation.Google ScholarGoogle ScholarCross RefCross Ref
  3. Abaqus. 2018. Abaqus. http://www.feasol.comGoogle ScholarGoogle Scholar
  4. Remi Abgrall, Cécile Dobrzynski, and Algiane Froehly. 2012. A method for computing curved 2D and 3D meshes via the linear elasticity analogy: preliminary results. Research Report RR-8061. INRIA. 15 pages. https://hal.inria.fr/hal-00728850Google ScholarGoogle Scholar
  5. R. Abgrall, C. Dobrzynski, and A. Froehly. 2014. A method for computing curved meshes via the linear elasticity analogy, application to fluid dynamics problems. International Journal for Numerical Methods in Fluids 76, 4 (2014), 246--266.Google ScholarGoogle ScholarCross RefCross Ref
  6. Pierre Alliez, David Cohen-Steiner, Mariette Yvinec, and Mathieu Desbrun. 2005. Variational Tetrahedral Meshing. ACM Trans. Graph. 24, 3 (July 2005), 617--625. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Ansys. 2018. Ansys. https://www.ansys.comGoogle ScholarGoogle Scholar
  8. Franz Aurenhammer. 1991. Voronoi Diagrams-a Survey of a Fundamental Geometric Data Structure. ACM Comput. Surv. 23, 3 (Sept. 1991), 345--405. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Franz Aurenhammer, Rolf Klein, and Der-Tsai Lee. 2013. Voronoi Diagrams and Delaunay Triangulations. WORLD SCIENTIFIC. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. I. Babuška and B.Q. Guo. 1992. The h, p and h-p version of the finite element method; basis theory and applications. Advances in Engineering Software 15, 3 (1992), 159 -- 174. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. I. Babuška and B. Q. Guo. 1988. The h-p Version of the Finite Element Method for Domains with Curved Boundaries. SIAM J. Numer. Anal. 25, 4 (1988), 837--861. http://www.jstor.org/stable/2157607Google ScholarGoogle ScholarCross RefCross Ref
  12. Brenda S. Baker, Eric Grosse, and Conor S. Rafferty. 1988. Nonobtuse triangulation of polygons. Discrete & Computational Geometry 3, 2 (01 Jun 1988), 147--168. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Adam W. Bargteil and Elaine Cohen. 2014. Animation of Deformable Bodies with Quadratic Bézier Finite Elements. ACM Trans. Graph. 33, 3, Article 27 (June 2014), 10 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. F. Bassi and S. Rebay. 1997. High-Order Accurate Discontinuous Finite Element Solution of the 2D Euler Equations. J. Comput. Phys. 138, 2 (1997), 251 -- 285. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Mark W Beall, Joe Walsh, and Mark S Shephard. 2003. Accessing CAD Geometry for Mesh Generation. In Proceedings of the 12th International Meshing Roundtable. 33--42.Google ScholarGoogle Scholar
  16. Marshall Bern, David Eppstein, and John Gilbert. 1994. Provably good mesh generation. J. Comput. System Sci. 48, 3 (1994), 384--409. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Fleurianne Bertrand, Steffen Munzenmaier, and Gerhard Starke. 2014a. First-order System Least Squares on Curved Boundaries: Higher-order Raviart-Thomas Elements. SIAM J. Numer. Anal. 52, 6 (2014), 3165--3180.Google ScholarGoogle ScholarCross RefCross Ref
  18. Fleurianne Bertrand, Steffen Munzenmaier, and Gerhard Starke. 2014b. First-Order System Least Squares on Curved Boundaries: Lowest-Order Raviart-Thomas Elements. SIAM J. Numer. Anal. 52, 2 (2014), 880--894.Google ScholarGoogle ScholarCross RefCross Ref
  19. Christopher J. Bishop. 2016. Nonobtuse Triangulations of PSLGs. Discrete & Computational Geometry 56, 1 (2016). Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Jean-Daniel Boissonnat, Olivier Devillers, Sylvain Pion, Monique Teillaud, and Mariette Yvinec. 2002. Triangulations in CGAL. Computational Geometry 22 (2002), 5--19. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Simon Boyé, Pascal Barla, and Gaël Guennebaud. 2012. A Vectorial Solver for Free-form Vector Gradients. ACM Trans. Graph. 31, 6, Article 173 (Nov. 2012), 9 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Dietrich Braess. 2007. Finite Elements (third ed.). Cambridge University Press. Cambridge Books Online.Google ScholarGoogle Scholar
  23. Oscar P Bruno and Matthew M Pohlman. 2003. High order surface representation. Topics in Computational Wave Propagation, Direct and Inverse Problems (2003).Google ScholarGoogle Scholar
  24. Oleksiy Busaryev, Tamal K. Dey, and Joshua A. Levine. 2009. Repairing and Meshing Imperfect Shapes with Delaunay Refinement. In 2009 SIAM/ACM Joint Conference on Geometric and Physical Modeling (SPM '09). ACM, New York, NY, USA, 25--33. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. S. A. Canann, S. N. Muthukrishnan, and R. K. Phillips. 1996. Topological refinement procedures for triangular finite element meshes. Engineering with Computers 12, 3 (01 Sep 1996), 243--255.Google ScholarGoogle Scholar
  26. Scott A. Canann, Michael B. Stephenson, and Ted Blacker. 1993. Optismoothing: An optimization-driven approach to mesh smoothing. Finite Elements in Analysis and Design 13, 2 (1993), 185 -- 190. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. David Cardoze, Alexandre Cunha, Gary L. Miller, Todd Phillips, and Noel Walkington. 2004. A Bézier-based Approach to Unstructured Moving Meshes. In Proceedings of the Twentieth Annual Symposium on Computational Geometry (SCG '04). ACM, New York, NY, USA, 310--319. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Long Chen and Jin-chao Xu. 2004. Optimal delaunay triangulations. Journal of Computational Mathematics (2004), 299--308.Google ScholarGoogle Scholar
  29. Siu-Wing Cheng, Tamal K. Dey, and Jonathan Shewchuk. 2012. Delaunay Mesh Generation.Google ScholarGoogle Scholar
  30. Philippe G Ciarlet and P-A Raviart. 1972. Interpolation theory over curved elements, with applications to finite element methods. Comput. Meth. Appl. Mech. Eng. 1, 2 (1972), 217--249.Google ScholarGoogle ScholarCross RefCross Ref
  31. Saikat Dey, Robert M. O'Bara, and Mark S. Shephard. 1999. Curvilinear Mesh Generation In 3D. In IMR. John Wiley & Sons, 407--417.Google ScholarGoogle Scholar
  32. Cecile Dobrzynski and Ghina El Jannoun. 2017. High order mesh untangling for complex curved geometries. Research Report RR-9120. INRIA Bordeaux, équipe CARDAMOM. https://hal.inria.fr/hal-01632388Google ScholarGoogle Scholar
  33. Luke Engvall and John A. Evans. 2017. Isogeometric unstructured tetrahedral and mixed-element Bernstein-Bézier discretizations. Computer Methods in Applied Mechanics and Engineering 319 (2017), 83 -- 123.Google ScholarGoogle ScholarCross RefCross Ref
  34. Luke Engvall and John A. Evans. 2018. Mesh Quality Metrics for Isogeometric Bernstein-Bézier Discretizations. arXiv:1810.06975 (2018).Google ScholarGoogle Scholar
  35. Leman Feng, Pierre Alliez, Laurent Busé, Hervé Delingette, and Mathieu Desbrun. 2018. Curved Optimal Delaunay Triangulation. ACM Trans. Graph. 37, 4 (2018). Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. C. O. Frederick, Y. C. Wong, and F. W. Edge. 1970. Two-dimensional automatic mesh generation for structural analysis. Internat. J. Numer. Methods Engrg. 2, 1 (1970), 133--144.Google ScholarGoogle ScholarCross RefCross Ref
  37. Xiao-Ming Fu, Yang Liu, and Baining Guo. 2015. Computing Locally Injective Mappings by Advanced MIPS. ACM Trans. Graph. 34, 4, Article 71 (July 2015), 12 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Abel Gargallo Peiró, Francisco Javier Roca Navarro, Jaume Peraire Guitart, and Josep Sarrate Ramos. 2013. High-order mesh generation on CAD geometries. In Adaptive Modeling and Simulation 2013. Centre Internacional de Mètodes Numèrics en Enginyeria (CIMNE), 301--312.Google ScholarGoogle Scholar
  39. John Alan George. 1971. Computer Implementation of the Finite Element Method. Ph.D. Dissertation. Stanford, CA, USA. AAI7205916.Google ScholarGoogle Scholar
  40. P.L. George and H. Borouchaki. 2012. Construction of tetrahedral meshes of degree two. Internat. J. Numer. Methods Engrg. 90, 9 (2012), 1156--1182.Google ScholarGoogle ScholarCross RefCross Ref
  41. Christophe Geuzaine, Amaury Johnen, Jonathan Lambrechts, Jean-François Remacle, and Thomas Toulorge. 2015. The Generation of Valid Curvilinear Meshes. Springer International Publishing, Cham, 15--39.Google ScholarGoogle Scholar
  42. Christophe Geuzaine and Jean-François Remacle. 2009. Gmsh: A 3-D finite element mesh generator with built-in pre- and post-processing facilities. Internat. J. Numer. Methods Engrg. 79, 11 (2009), 1309--1331.Google ScholarGoogle ScholarCross RefCross Ref
  43. Arash Ghasemi, Lafayette K. Taylor, and James C. Newman, III. 2016. Massively Parallel Curved Spectral/Finite Element Mesh Generation of Industrial CAD Geometries in Two and Three Dimensions. Fluids Engineering Division Summer Meeting 50299 (2016).Google ScholarGoogle Scholar
  44. Michael T Goodrich, Leonidas J Guibas, John Hershberger, and Paul J Tanenbaum. 1997. Snap rounding line segments efficiently in two and three dimensions. In Proceedings of the thirteenth annual symposium on Computational geometry. ACM, 284--293. Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. Gaël Guennebaud, Benoît Jacob, et al. 2010. Eigen v3.Google ScholarGoogle Scholar
  46. Yixin Hu, Qingnan Zhou, Xifeng Gao, Alec Jacobson, Denis Zorin, and Daniele Panozzo. 2018. Tetrahedral Meshing in the Wild. ACM Trans. Graph. 37, 4, Article 60 (July 2018), 14 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  47. Thomas JR Hughes, John A Cottrell, and Yuri Bazilevs. 2005. Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Comput. Meth. Appl. Mech. Eng. 194, 39 (2005), 4135--4195.Google ScholarGoogle ScholarCross RefCross Ref
  48. Amaury Johnen, Jean François Remacle, and Christophe A. Geuzaine. 2013. Geometrical validity of curvilinear finite elements. J. Comput. Phys. 233 (2013), 359 -- 372. Google ScholarGoogle ScholarDigital LibraryDigital Library
  49. Pushkar Joshi and Nathan A. Carr. 2008. Repoussé: Automatic Inflation of 2D Artwork. In Proceedings of the Fifth Eurographics Conference on Sketch-Based Interfaces and Modeling (SBM'08). Eurographics Association, Aire-la-Ville, Switzerland, Switzerland, 49--55. Google ScholarGoogle ScholarDigital LibraryDigital Library
  50. Steve L. Karman, J T. Erwin, Ryan S. Glasby, and Douglas Stefanski. 2016. High-Order Mesh Curving Using WCN Mesh Optimization. In 46th AIAA Fluid Dynamics Conference, AIAA AVIATION Forum.Google ScholarGoogle Scholar
  51. Patrick M. Knupp. 2000. Achieving finite element mesh quality via optimization of the Jacobian matrix norm and associated quantities. Part II, A framework for volume mesh optimization and the condition number of the Jacobian matrix. Internat. J. Numer. Methods Engrg. 48, 8 (2000), 1165--1185. <1165::AID-NME940>3.0.CO;2-YGoogle ScholarGoogle ScholarCross RefCross Ref
  52. Yaron Lipman. 2012. Bounded Distortion Mapping Spaces for Triangular Meshes. ACM Trans. Graph. 31, 4 (2012). Google ScholarGoogle ScholarDigital LibraryDigital Library
  53. Qiukai Lu, Mark S. Shephard, Saurabh Tendulkar, and Mark W. Beall. 2013. Parallel Curved Mesh Adaptation for Large Scale High-Order Finite Element Simulations. In Proceedings of the 21st International Meshing Roundtable, Xiangmin Jiao and Jean-Christophe Weill (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 419--436.Google ScholarGoogle Scholar
  54. Xiaojuan Luo, Mark S Shephard, and Jean-Francois Remacle. 2001. The influence of geometric approximation on the accuracy of high order methods. Rensselaer SCOREC report 1 (2001).Google ScholarGoogle Scholar
  55. Xiaojuan Luo, Mark S. Shephard, Jean-François Remacle, Robert M. O'Bara, Mark W. Beall, Barna A. Szabó, and Ricardo Actis. 2002. p-Version Mesh Generation Issues. In IMR.Google ScholarGoogle Scholar
  56. Richard H. MacNeal. 1949. The solution of partial differential equations by means of electrical networks. Ph.D. Dissertation. CalTech.Google ScholarGoogle Scholar
  57. Manish Mandad, David Cohen-Steiner, and Pierre Alliez. 2015. Isotopic Approximation Within a Tolerance Volume. ACM Trans. Graph. 34, 4, Article 64 (July 2015), 12 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  58. MATLAB Partial Differential Equation Toolbox 2018. MATLAB Partial Differential Equation Toolbox. The MathWorks, Natick, MA, USA.Google ScholarGoogle Scholar
  59. Johannes Mezger, Bernhard Thomaszewski, Simon Pabst, and Wolfgang Straśer. 2009. Interactive physically-based shape editing. Computer Aided Geometric Design 26, 6 (2009), 680 -- 694. Solid and Physical Modeling 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  60. P. Monk. 1987. A Mixed Finite Element Method for the Biharmonic Equation. SIAM J. Numer. Anal. 24, 4 (1987), 737--749. Google ScholarGoogle ScholarDigital LibraryDigital Library
  61. D. Moxey, D. Ekelschot, Ü. Keskin, S.J. Sherwin, and J. Peiró. 2016. High-order curvilinear meshing using a thermo-elastic analogy. Computer-Aided Design 72 (2016), 130--139. 23rd International Meshing Roundtable Special Issue: Advances in Mesh Generation. Google ScholarGoogle ScholarDigital LibraryDigital Library
  62. J. Tinsley Oden. 1994. Optimal h-p finite element methods. Computer Methods in Applied Mechanics and Engineering 112, 1 (1994), 309 -- 331.Google ScholarGoogle ScholarCross RefCross Ref
  63. Alexandrina Orzan, Adrien Bousseau, Holger Winnemöller, Pascal Barla, Joëlle Thollot, and David Salesin. 2008. Diffusion Curves: A Vector Representation for Smooth-Shaded Images. In ACM Transactions on Graphics (Proceedings of SIGGRAPH 2008), Vol. 27. http://maverick.inria.fr/Publications/2008/OBWBTS08 Google ScholarGoogle ScholarDigital LibraryDigital Library
  64. Magdalini Panagiotakopoulou, Martin Bergert, Anna Taubenberger, Jochen Guck, Dimos Poulikakos, and Aldo Ferrari. 2016. A Nanoprinted Model of Interstitial Cancer Migration Reveals a Link between Cell Deformability and Proliferation. ACS Nano 10, 7 (2016), 6437--6448. PMID: 27268411.Google ScholarGoogle ScholarCross RefCross Ref
  65. Joaquim Peiró, Spencer J. Sherwin, and Sergio Giordana. 2008. Automatic reconstruction of a patient-specific high-order surface representation and its application to mesh generation for CFD calculations. Medical & Biological Engineering & Computing 46, 11 (01 Nov 2008), 1069--1083.Google ScholarGoogle Scholar
  66. J. Peraire, M. Vahdati, K Morgan, and O. C. Zienkiewicz. 1987. Adaptive Remeshing for Compressible Flow Computations. J. Comput. Phys. 72, 2 (Oct. 1987), 449--466. Google ScholarGoogle ScholarDigital LibraryDigital Library
  67. Per-Olof Persson and Jaime Peraire. 2009. Curved Mesh Generation and Mesh Refinement using Lagrangian Solid Mechanics. In 47th AIAA Aerospace Sciences Meeting including The New Horizons Forum and Aerospace Exposition.Google ScholarGoogle ScholarCross RefCross Ref
  68. Roman Poya, Ruben Sevilla, and Antonio J. Gil. 2016. A unified approach for a posteriori high-order curved mesh generation using solid mechanics. Computational Mechanics 58, 3 (01 Sep 2016), 457--490. Google ScholarGoogle ScholarDigital LibraryDigital Library
  69. Michael Rabinovich, Roi Poranne, Daniele Panozzo, and Olga Sorkine-Hornung. 2017. Scalable Locally Injective Mappings. ACM Trans. Graph. 36, 2, Article 37a (April 2017). Google ScholarGoogle ScholarDigital LibraryDigital Library
  70. Xevi Roca, Abel Gargallo-Peiró, and Josep Sarrate. 2012. Defining Quality Measures for High-Order Planar Triangles and Curved Mesh Generation. In Proceedings of the 20th International Meshing Roundtable, William Roshan Quadros (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg, 365--383.Google ScholarGoogle Scholar
  71. Eloi Ruiz-Gironés, Abel Gargallo-Peiró, Josep Sarrate, and Xevi Roca. 2017. An augmented Lagrangian formulation to impose boundary conditions for distortion based mesh moving and curving. Procedia Engineering 203 (2017), 362 -- 374. 26thInternationalMeshingRoundtable, IMR26, 18--21 September 2017, Barcelona, Spain.Google ScholarGoogle ScholarCross RefCross Ref
  72. Eloi Ruiz-Gironés, Xevi Roca, and Jose Sarrate. 2016a. High-order mesh curving by distortion minimization with boundary nodes free to slide on a 3D CAD representation. Computer-Aided Design 72 (2016), 52 -- 64. 23rd International Meshing Roundtable Special Issue: Advances in Mesh Generation. Google ScholarGoogle ScholarDigital LibraryDigital Library
  73. Eloi Ruiz-Gironés, Josep Sarrate, and Xevi Roca. 2016b. Generation of Curved High-order Meshes with Optimal Quality and Geometric Accuracy. Procedia Engineering 163 (2016), 315--327. 25th International Meshing Roundtable.Google ScholarGoogle ScholarCross RefCross Ref
  74. Edward A. Sadek. 1980. A scheme for the automatic generation of triangular finite elements. Internat. J. Numer. Methods Engrg. 15, 12 (1980), 1813--1822.Google ScholarGoogle ScholarCross RefCross Ref
  75. L Ridgway Scott. 1973. Finite element techniques for curved boundaries. Ph.D. Dissertation. Massachusetts Institute of Technology.Google ScholarGoogle Scholar
  76. Ridgway Scott. 1975. Interpolated boundary conditions in the finite element method. SIAM J. Numer. Anal. 12, 3 (1975), 404--427.Google ScholarGoogle ScholarDigital LibraryDigital Library
  77. T.W. Sederberg and T. Nishita. 1990. Curve intersection using Bézier clipping. Computer-Aided Design 22, 9 (1990), 538 -- 549. Google ScholarGoogle ScholarDigital LibraryDigital Library
  78. Ruben Sevilla, Sonia Fernández-Méndez, and Antonio Huerta. 2011. NURBS-Enhanced Finite Element Method (NEFEM). Arch. Comput. Methods Eng. 18, 4 (2011), 441--484.Google ScholarGoogle Scholar
  79. Mark S. Shephard, Joseph E. Flaherty, Kenneth E. Jansen, Xiangrong Li, Xiaojuan Luo, Nicolas Chevaugeon, Jean-François Remacle, Mark W. Beall, and Robert M. O'Bara. 2005. Adaptive mesh generation for curved domains. Applied Numerical Mathematics 52, 2 (2005), 251 -- 271. ADAPT '03: Conference on Adaptive Methods for Partial Differential Equations and Large-Scale Computation. Google ScholarGoogle ScholarDigital LibraryDigital Library
  80. SJ Sherwin and J Peiró. 2002. Mesh generation in curvilinear domains using high-order elements. Internat. J. Numer. Methods Engrg. 53, 1 (2002), 207--223.Google ScholarGoogle ScholarCross RefCross Ref
  81. J Shewchuk. 2012. Unstructured Mesh Generation. In Combinatorial Scientific Computing.Google ScholarGoogle Scholar
  82. Jonathan Richard Shewchuk. 1996. Triangle: Engineering a 2D quality mesh generator and Delaunay triangulator. In Applied Computational Geometry Towards Geometric Engineering, Ming C. Lin and Dinesh Manocha (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 203--222. Google ScholarGoogle ScholarDigital LibraryDigital Library
  83. Jonathan Richard Shewchuk. 1997. Adaptive Precision Floating-Point Arithmetic and Fast Robust Geometric Predicates. Discrete & Computational Geometry 18, 3 (Oct. 1997), 305--363.Google ScholarGoogle Scholar
  84. Jonathan Richard Shewchuk. 1999. Lecture Notes on Delaunay Mesh Generation. Technical Report.Google ScholarGoogle Scholar
  85. Jonathan Richard Shewchuk. 2002. What is a Good Linear Element? Interpolation, Conditioning, and Quality Measures. In Proceedings of the 11th International Meshing Roundtable, IMR 2002, Ithaca, New York, USA, September 15-18, 2002. 115--126. http://imr.sandia.gov/papers/abstracts/Sh247.htmlGoogle ScholarGoogle Scholar
  86. Mike Stees and Suzanne M. Shontz. 2017. A high-order log barrier-based mesh generation and warping method. Procedia Engineering 203 (2017), 180 -- 192. 26th International Meshing Roundtable, IMR26, 18--21 September 2017, Barcelona, Spain.Google ScholarGoogle ScholarCross RefCross Ref
  87. Rolf Stenberg. 1984. Analysis of Mixed Finite Element Methods for the Stokes Problem: A Unified Approach. Math. Comp. 42, 165 (1984), 9--23. http://www.jstor.org/stable/2007557Google ScholarGoogle Scholar
  88. Daniel Sýkora, Ladislav Kavan, Martin Čadík, Ondřej Jamriška, Alec Jacobson, Brian Whited, Maryann Simmons, and Olga Sorkine-Hornung. 2014. Ink-and-ray: Bas-relief Meshes for Adding Global Illumination Effects to Hand-drawn Characters. ACM Trans. Graph. 33, 2, Article 16 (April 2014), 15 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  89. Thomas Toulorge, Christophe Geuzaine, Jean-François Remacle, and Jonathan Lambrechts. 2013. Robust untangling of curvilinear meshes. J. Comput. Phys. 254 (2013), 8 -- 26. Google ScholarGoogle ScholarDigital LibraryDigital Library
  90. Thomas Toulorge, Jonathan Lambrechts, and Jean-François Remacle. 2016. Optimizing the geometrical accuracy of curvilinear meshes. J. Comput. Phys. 310 (2016), 361 -- 380. Google ScholarGoogle ScholarDigital LibraryDigital Library
  91. Ron Wein, Eric Berberich, Efi Fogel, Dan Halperin, Michael Hemmer, Oren Salzman, and Baruch Zukerman. 2018. 2D Arrangements. In CGAL User and Reference Manual (4.13 ed.). CGAL Editorial Board. https://doc.cgal.org/4.13/Manual/packages.html#PkgArrangement2SummaryGoogle ScholarGoogle Scholar
  92. Dong Xue, Leszek Demkowicz, et al. 2005. Control of geometry induced error in hp finite element (FE) simulations. I. Evaluation of FE error for curvilinear geometries. Int. J. Numer. Anal. Model 2, 3 (2005), 283--300.Google ScholarGoogle Scholar
  93. M. A. Yerry and M. S. Shephard. 1983. A Modified Quadtree Approach To Finite Element Mesh Generation. IEEE Computer Graphics and Applications 3, 1 (Jan 1983), 39--46. Google ScholarGoogle ScholarDigital LibraryDigital Library
  94. V.S. Ziel, H. Bériot, O. Atak, and G. Gabard. 2017. Comparison of 2D boundary curving methods with modal shape functions and a piecewise linear target mesh. Procedia Engineering 203 (2017), 91 -- 101. 26th International Meshing Roundtable, IMR26, 18--21 September 2017, Barcelona, Spain.Google ScholarGoogle ScholarCross RefCross Ref
  95. Patrick Zulian, Teseo Schneider, Hormann Kai, and Krause Rolf. 2017. Parametric finite elements with bijective mappings. BIT Numerical Mathematics (2017), 1--19.Google ScholarGoogle Scholar

Index Terms

  1. TriWild: robust triangulation with curve constraints

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in

    Full Access

    • Published in

      cover image ACM Transactions on Graphics
      ACM Transactions on Graphics  Volume 38, Issue 4
      August 2019
      1480 pages
      ISSN:0730-0301
      EISSN:1557-7368
      DOI:10.1145/3306346
      Issue’s Table of Contents

      Copyright © 2019 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 12 July 2019
      Published in tog Volume 38, Issue 4

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader