skip to main content
research-article
Open Access

Anisotropic elasticity for inversion-safety and element rehabilitation

Published:12 July 2019Publication History
Skip Abstract Section

Abstract

We present an analysis of anisotropic hyperelasticity, specifically transverse isotropy, that obtains closed-form expressions for the eigendecompositions of many common energies. We then use these to build fast and concise Newton implementations. We leverage our analysis in two separate applications. First, we show that existing anisotropic energies are not inversion-safe, and contain spurious stable states under large deformation. We then propose a new anisotropic strain invariant that enables the formulation of a novel, robust, and inversion-safe energy. The new energy fits completely within our analysis, so closed-form expressions are obtained for its eigensystem as well. Secondly, we use our analysis to rehabilitate badly-conditioned finite elements. Using this method, we can robustly simulate large deformations even when a mesh contains degenerate, zero-volume elements. We accomplish this by swapping the badly-behaved isotropic direction with a well-behaved anisotropic term. We validate our approach on a variety of examples.

Skip Supplemental Material Section

Supplemental Material

References

  1. V. Alastrué, E. Peña, M. Martínez, and M. Doblaré. 2008. Experimental study and constitutive modelling of the passive mechanical properties of the ovine infrarenal vena cava tissue. J. of Biomechanics 41, 14 (2008), 3038--3045.Google ScholarGoogle ScholarCross RefCross Ref
  2. M. Alexa, D. Cohen-Or, and D. Levin. 2000. As-rigid-as-possible Shape Interpolation. In Proceedings of SIGGRAPH. 157--164. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. D. Baraff and A. Witkin. 1998. Large Steps in Cloth Simulation. In Proceedings of SIGGRAPH. 43--54. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. J. Barbič and Doug L. James. 2005. Real-Time Subspace Integration for St. Venant-Kirchhoff Deformable Models. ACM Trans. Graph. 24, 3 (2005), 982--990. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. A. Bargteil, C. Wojtan, J. Hodgins, and G. Turk. 2007. A Finite Element Method for Animating Large Viscoplastic Flow. ACM Trans. Graph. 26, 3 (2007). Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. T. Belytschko, W. Liu, B. Moran, and K. Elkhodary. 2013. Nonlinear finite elements for continua and structures. John Wiley & Sons.Google ScholarGoogle Scholar
  7. S. Blemker, P. Pinsky, and S. Delp. 2005. A 3D model of muscle reveals the causes of nonuniform strains in the biceps brachii. J. of Biomechanics 38, 4 (2005), 657--665.Google ScholarGoogle ScholarCross RefCross Ref
  8. J. Bonet and R. D. Wood. 2008. Nonlinear continuum mechanics for finite element analysis. Cambridge University Press.Google ScholarGoogle Scholar
  9. S. Bouaziz, S. Martin, T. Liu, L. Kavan, and M. Pauly. 2014. Projective Dynamics: Fusing Constraint Projections for Fast Simulation. ACM Trans. Graph. 33, 4 (2014). Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. J. Cai. 2016. Simulating Deformable Models with Anisotropic Materials. Ph.D. Dissertation. Nanyang Technological University.Google ScholarGoogle Scholar
  11. G. Chagnon, M. Rebouah, and D. Favier. 2015. Hyperelastic energy densities for soft biological tissues: a review. J. of Elasticity 120, 2 (2015), 129--160.Google ScholarGoogle ScholarCross RefCross Ref
  12. J. Chen, H. Bao, T. Wang, M. Desbrun, and J. Huang. 2018. Numerical Coarsening Using Discontinuous Shape Functions. ACM Trans. Graph. 37, 4, Article 120 (July 2018), 12 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. P. Ciarletta, I. Izzo, S. Micera, and F. Tendick. 2011. Stiffening by fiber reinforcement in soft materials: a hyperelastic theory at large strains and its application. Journal of the Mechanical Behavior of Biomedical Materials 4, 7 (2011), 1359--1368.Google ScholarGoogle ScholarCross RefCross Ref
  14. C. Forest, H. Delingette, and N. Ayache. 2002. Removing tetrahedra from a manifold mesh. In Proceedings of Computer Animation. 225--229. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. T. Gast, C. Schroeder, A. Stomakhin, C. Jiang, and J. Teran. 2015. Optimization Integrator for Large Time Steps. IEEE Transactions on Visualization and Computer Graphics 21, 10 (2015), 1103--1115. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. G. H. Golub and C. F. Van Loan. 2012. Matrix computations. Vol. 3. JHU Press.Google ScholarGoogle Scholar
  17. C. Gonzalez-Ochoa, D. Eberle, and R. Dressel. 2002. Dynamic Simulation of Wing Motion on "Reign of Fire". In ACM SIGGRAPH Sketches. 174--174. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. G. Holzapfel. 2005. Similarities between soft biological tissues and rubberlike materials. In Constitutive Models for Rubber IV, Vol. 4. 607.Google ScholarGoogle Scholar
  19. G. Holzapfel, T. Gasser, and R. Ogden. 2000. A new constitutive framework for arterial wall mechanics and a comparative study of material models. Journal of Elasticity and the Physical Science of Solids 61, 1--3 (2000), 1--48.Google ScholarGoogle ScholarCross RefCross Ref
  20. C. Horgan and G. Saccomandi. 2005. A new constitutive theory for fiber-reinforced incompressible nonlinearly elastic solids. Journal of the Mechanics and Physics of Solids 53, 9 (2005), 1985--2015.Google ScholarGoogle ScholarCross RefCross Ref
  21. Y. Hu, Q. Zhou, X. Gao, A. Jacobson, D. Zorin, and D. Panozzo. 2018. Tetrahedral Meshing in the Wild. ACM Trans. Graph. 37, 4, Article 60 (July 2018), 14 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. H. Iben. 2007. Generating Surface Crack Patterns. Ph.D. Dissertation. University of California, Berkeley. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. G. Irving, R. Kautzman, G. Cameron, and J. Chong. 2008. Simulating the Devolved: Finite Elements on WALL-E. In ACM SIGGRAPH Talks. Article 54, 1 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. G. Irving, J. Teran, and R. Fedkiw. 2004. Invertible Finite Elements for Robust Simulation of Large Deformation. In SIGGRAPH/Eurog. Symp. on Comp. Anim. 131--140. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. A. Jacobson, Z. Deng, L. Kavan, and J. P. Lewis. 2014. Skinning: Real-time Shape Deformation. In ACM SIGGRAPH Courses. Article 24, 24:1--24:1 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. P. M. Knupp. 2003. Algebraic mesh quality metrics for unstructured initial meshes. Finite Elements in Analysis and Design 39, 3 (2003), 217--241. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. D. Koschier, J. Bender, and N. Thuerey. 2017. Robust extended Finite Elements for Complex Cutting of Deformables. ACM Trans. Graph. 36, 4, Article 55 (July 2017). Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. F. Labelle and J. Shewchuk. 2007. Isosurface Stuffing: Fast Tetrahedral Meshes with Good Dihedral Angles. ACM Trans. Graph. 26, 3, Article 57 (July 2007). Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. S. Lee and D. Terzopoulos. 2006. Heads Up!: Biomechanical Modeling and Neuromuscular Control of the Neck. ACM Trans. Graph. 25, 3 (July 2006), 1188--1198. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. S. Lee, R. Yu, J. Park, M. Aanjaneya, E. Sifakis, and J. Lee. 2018. Dexterous Manipulation and Control with Volumetric Muscles. ACM Trans. Graph. 37, 4, Article 57 (July 2018), 13 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Y. Lee, M. Park, T. Kwon, and J. Lee. 2014. Locomotion Control for Many-muscle Humanoids. ACM Trans. Graph. 33, 6, Article 218 (Nov. 2014), 11 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Y. Li and J. Barbič. 2015. Stable anisotropic materials. IEEE Transactions on Visualization and Computer Graphics 21, 10 (2015), 1129--1137. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Y. Li, H. Xu, and J. Barbič. 2017. Enriching Triangle Mesh Animations with Physically Based Simulation. IEEE Transactions on Visualization and Computer Graphics 23, 10 (2017), 2301--2313.Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. T. Liu, S. Bouaziz, and L. Kavan. 2017. Quasi-Newton Methods for Real-Time Simulation of Hyperelastic Materials. ACM Trans. Graph. 36, 3 (2017). Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. P.-L. Manteaux, C. Wojtan, R. Narain, S. Redon, F. Faure, and M.-P. Cani. 2017. Adaptive Physically Based Models in Computer Graphics. Comput. Graph. Forum 36, 6 (Sept. 2017), 312--337. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. A. McAdams, Y. Zhu, A. Selle, M. Empey, R. Tamstorf, J. Teran, and E. Sifakis. 2011. Efficient Elasticity for Character Skinning with Contact and Collisions. ACM Trans. Graph. 30, 4 (2011). Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. A. Milne, M. McLaughlin, R. Tamstorf, A. Stomakhin, N. Burkard, M. Counsell, J. Canal, D. Komorowski, and E. Goldberg. 2016. Flesh, Flab, and Fascia Simulation on Zootopia. In ACM SIGGRAPH Talks. Article 34, 2 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. N. Molino, Z. Bao, and R. Fedkiw. 2004. A Virtual Node Algorithm for Changing Mesh Topology During Simulation. ACM Trans. Graph. 23, 3 (Aug. 2004), 385--392. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. N. Molino, R. Bridson, J. Teran, and R. Fedkiw. 2003. A Crystalline, Red Green Strategy for Meshing Highly Deformable Objects with Tetrahedra.. In International Meshing Roundtable. 103--114.Google ScholarGoogle Scholar
  40. D. Nolan, A. Gower, M. Destrade, R. Ogden, and J. McGarry. 2014. A robust anisotropic hyperelastic formulation for the modelling of soft tissue. Journal of the Mechanical Behavior of Biomedical Materials 39 (2014), 48--60.Google ScholarGoogle ScholarCross RefCross Ref
  41. G. Picinbono, J. Lombardo, H. Delingette, and N. Ayache. 2000. Anisotropic elasticity and force extrapolation to improve realism of surgery simulation. In IEEE International Conference on Robotics and Automation. IEEE, 596--602.Google ScholarGoogle Scholar
  42. Y. Qiu. 2018. Spectra, a C++ Library For Large Scale Eigenvalue Problems. https://spectralib.org.Google ScholarGoogle Scholar
  43. K. Rupp, P. Tillet, F. Rudolf, J. Weinbub, A. Morhammer, T. Grasser, A. Jüngel, and S. Selberherr. 2016. ViennaCL, Linear Algebra Library for Multi-and Many-Core Architectures. SIAM Journal on Scientific Computing 38, 5 (2016), 412--439.Google ScholarGoogle ScholarCross RefCross Ref
  44. P. Sachdeva, S. Sueda, S. Bradley, M. Fain, and D. K. Pai. 2015. Biomechanical Simulation and Control of Hands and Tendinous Systems. ACM Trans. Graph. 34, 4, Article 42 (July 2015). Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. S. Saito, Z. Zhou, and L. Kavan. 2015. Computational Body building: Anatomically-based Modeling of Human Bodies. ACM Trans. Graph. 34, 4, Article 41 (July 2015). Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. T. Schneider, Y. Hu, J. Dumas, X. Gao, D. Panozzo, and D. Zorin. 2018. Decoupling Simulation Accuracy from Mesh Quality. ACM Trans. Graph. (2018). Google ScholarGoogle ScholarDigital LibraryDigital Library
  47. J. Shewchuk. 2002. What is a good linear finite element? interpolation, conditioning, anisotropy, and quality measures. University of California at Berkeley 73 (2002).Google ScholarGoogle Scholar
  48. B. Smith, F. de Goes, and T. Kim. 2018. Stable Neo-Hookean Flesh Simulation. ACM Trans. Graph. 37, 2 (2018). Google ScholarGoogle ScholarDigital LibraryDigital Library
  49. B. Smith, F. de Goes, and T. Kim. 2019. Analytic Eigensystems For Isotropic Distortion Energies. ACM Trans. Graph. (2019). Google ScholarGoogle ScholarDigital LibraryDigital Library
  50. O. Sorkine and M. Alexa. 2007. As-rigid-as-possible surface modeling. In Eurog. Symposium on Geometry processing, Vol. 4. Google ScholarGoogle ScholarDigital LibraryDigital Library
  51. A. Stomakhin, R. Howes, C. Schroeder, and J. M. Teran. 2012. Energetically Consistent Invertible Elasticity. In ACM SIGGRAPH/Eurog. Symp. Comp. Anim. 25--32. Google ScholarGoogle ScholarDigital LibraryDigital Library
  52. J. Teran, S. Blemker, V. Hing, and R. Fedkiw. 2003. Finite volume methods for the simulation of skeletal muscle. In SIGGRAPH/Eurog. Symp. on Comp. Anim. 68--74. Google ScholarGoogle ScholarDigital LibraryDigital Library
  53. J. Teran, E. Sifakis, G. Irving, and R. Fedkiw. 2005. Robust Quasistatic Finite Elements and Flesh Simulation. In ACM SIGGRAPH/Eurog. Symp. on Comp. Anim. 181--190. Google ScholarGoogle ScholarDigital LibraryDigital Library
  54. Y. Tong, S. Lombeyda, A. N. Hirani, and M. Desbrun. 2003. Discrete Multiscale Vector Field Decomposition. ACM Trans. Graph. 22, 3 (July 2003), 445--452. Google ScholarGoogle ScholarDigital LibraryDigital Library
  55. B. Wang, Y. Zhao, and J. Barbič. 2017. Botanical Materials Based on Biomechanics. ACM Trans. Graph. 36, 4, Article 135 (July 2017), 13 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  56. H. Wang and Y. Yang. 2016. Descent Methods for Elastic Body Simulation on the GPU. ACM Trans. Graph. 35, 6 (2016). Google ScholarGoogle ScholarDigital LibraryDigital Library
  57. J. Weiss, B. Maker, and S. Govindjee. 1996. Finite element implementation of incompressible, transversely isotropic hyperelasticity. Computer Methods in Applied Mechanics and Engineering 135, 1--2 (1996), 107--128.Google ScholarGoogle ScholarCross RefCross Ref
  58. C. Wojtan and G. Turk. 2008. Fast viscoelastic behavior with thin features. ACM Trans. Graph. 27, 3 (2008), 47. Google ScholarGoogle ScholarDigital LibraryDigital Library
  59. A. Wong, D. Eberle, and T. Kim. 2018. Clean Cloth Inputs: Removing Character Self-intersections with Volume Simulation. In ACM SIGGRAPH Talks. Article 42. Google ScholarGoogle ScholarDigital LibraryDigital Library
  60. H. Xu, F. Sin, Y. Zhu, and J. Barbič. 2015. Nonlinear Material Design Using Principal Stretches. ACM Trans. Graph. 34, 4 (2015). Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Anisotropic elasticity for inversion-safety and element rehabilitation

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in

    Full Access

    • Published in

      cover image ACM Transactions on Graphics
      ACM Transactions on Graphics  Volume 38, Issue 4
      August 2019
      1480 pages
      ISSN:0730-0301
      EISSN:1557-7368
      DOI:10.1145/3306346
      Issue’s Table of Contents

      Copyright © 2019 Owner/Author

      Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses, contact the Owner/Author.

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 12 July 2019
      Published in tog Volume 38, Issue 4

      Check for updates

      Qualifiers

      • research-article

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader