skip to main content
research-article

Finding hexahedrizations for small quadrangulations of the sphere

Published:12 July 2019Publication History
Skip Abstract Section

Abstract

This paper tackles the challenging problem of constrained hexahedral meshing. An algorithm is introduced to build combinatorial hexahedral meshes whose boundary facets exactly match a given quadrangulation of the topological sphere. This algorithm is the first practical solution to the problem. It is able to compute small hexahedral meshes of quadrangulations for which the previously known best solutions could only be built by hand or contained thousands of hexahedra. These challenging quadrangulations include the boundaries of transition templates that are critical for the success of general hexahedral meshing algorithms.

The algorithm proposed in this paper is dedicated to building combinatorial hexahedral meshes of small quadrangulations and ignores the geometrical problem. The key idea of the method is to exploit the equivalence between quad flips in the boundary and the insertion of hexahedra glued to this boundary. The tree of all sequences of flipping operations is explored, searching for a path that transforms the input quadrangulation Q into a new quadrangulation for which a hexahedral mesh is known. When a small hexahedral mesh exists, a sequence transforming Q into the boundary of a cube is found; otherwise, a set of pre-computed hexahedral meshes is used.

A novel approach to deal with the large number of problem symmetries is proposed. Combined with an efficient backtracking search, it allows small shellable hexahedral meshes to be found for all even quadrangulations with up to 20 quadrangles. All 54, 943 such quadrangulations were meshed using no more than 72 hexahedra. This algorithm is also used to find a construction to fill arbitrary domains, thereby proving that any ball-shaped domain bounded by n quadrangles can be meshed with no more than 78 n hexahedra. This very significantly lowers the previous upper bound of 5396 n.

Skip Supplemental Material Section

Supplemental Material

papers_394.mp4

References

  1. Tristan Carrier Baudouin, Jean-Francois Remacle, Emilie Marchandise, Francois Henrotte, and Christophe Geuzaine. 2014. A frontal approach to hex-dominant mesh generation. Advanced Modeling and Simulation in Engineering Sciences 1, 1 (2014), 1. http://amses-journal.springeropen.com/articles/10.1186/2213-7467-1-8Google ScholarGoogle ScholarCross RefCross Ref
  2. Marshall W. Bern, David Eppstein, and Jeff Erickson. 2002. Flipping Cubical Meshes. Eng. Comput. (Lond.) 18, 3 (2002), 173--187.Google ScholarGoogle ScholarCross RefCross Ref
  3. Gunnar Brinkmann, Sam Greenberg, Catherine S. Greenhill, Brendan D. McKay, Robin Thomas, and Paul Wollan. 2005. Generation of simple quadrangulations of the sphere. Discrete Mathematics 305, 1--3 (2005), 33--54. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Gunnar Brinkmann and Brendan D. McKay. 2007. Fast generation of planar graphs. MATCH Commun. Math. Comput. Chem 58, 2 (2007), 323--357.Google ScholarGoogle Scholar
  5. Benjamin A. Burton. 2011. The pachner graph and the simplification of 3-sphere triangulations. In Proceedings of the 27th Symposium on Computational Geometry. 153--162. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Carlos D. Carbonera and Jason F. Shepherd. 2010. A constructive approach to constrained hexahedral mesh generation. Eng. Comput. (Lond.) 26, 4 (2010), 341--350.Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Charles J. Colbourn and Kellogg S. Booth. 1981. Linear time automorphism algorithms for trees, interval graphs, and planar graphs. SIAM J. Comput. 10, 1 (1981), 203--225.Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. David Eppstein. 1999a. Linear complexity hexahedral mesh generation. Computational Geometry 12, 1--2 (1999), 3--16. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. David Eppstein. 1999b. Subgraph isomorphism in planar graphs and related problems. J. Graph Algorithms Appl. 3, 3 (1999). http://www.cs.brown.edu/publications/jgaa/accepted/99/Eppstein99.3.3.pdfGoogle ScholarGoogle ScholarCross RefCross Ref
  10. Jeff Erickson. 2014. Efficiently hex-meshing things with topology. Discrete & Computational Geometry 52, 3 (2014), 427--449. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Torsten Fahle, Stefan Schamberger, and Meinolf Sellmann. 2001. Symmetry Breaking. In Principles and Practice of Constraint Programming. 93--107. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Xianzhong Fang, Weiwei Xu, Hujun Bao, and Jin Huang. 2016. All-hex meshing using closed-form induced polycube. ACM Trans. Graph. 35, 4 (2016), 124:1--124:9. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Louis Funar. 1999. Cubulations mod bubble moves. Contemp. Math. 233 (1999), 29--44.Google ScholarGoogle ScholarCross RefCross Ref
  14. Robert Furch. 1924. Zur grundlegung der kombinatorischen topologie. Abh. Math. Sem. Univ. Hamburg 3, 1 (1924), 69--88.Google ScholarGoogle ScholarCross RefCross Ref
  15. Xifeng Gao, Wenzel Jakob, Marco Tarini, and Daniele Panozzo. 2017. Robust hex-dominant mesh generation using field-guided polyhedral agglomeration. ACM Trans. Graph. 36, 4 (2017), 114:1--114:13. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Ian P. Gent, Karen E. Petrie, and Jean-François Puget. 2006. Symmetry in Constraint Programming. In Handbook of Constraint Programming. 329--376.Google ScholarGoogle Scholar
  17. Xavier Goaoc, Pavel Paták, Zuzana Patáková, Martin Tancer, and Uli Wagner. 2018. Shellability is NP-Complete. In Proceedings of the 34th Symposium on Computational Geometry. 41:1--41:15.Google ScholarGoogle Scholar
  18. James Gregson, Alla Sheffer, and Eugene Zhang. 2011. All-hex mesh generation via volumetric polycube deformation. Comput. Graph. Forum 30, 5 (2011), 1407--1416.Google ScholarGoogle ScholarCross RefCross Ref
  19. Shuchu Han, Jiazhi Xia, and Ying He. 2011. Constructing hexahedral shell meshes via volumetric polycube maps. Computer-Aided Design 43, 10 (2011), 1222--1233. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Yasushi Ito, Alan M. Shih, and Bharat K. Soni. 2009. Octree-based reasonable-quality hexahedral mesh generation using a new set of refinement templates. Internat. J. Numer. Methods Engrg. 77, 13 (2009), 1809--1833.Google ScholarGoogle ScholarCross RefCross Ref
  21. Charles Jordan, Michael Joswig, and Lars Kastner. 2018. Parallel Enumeration of Triangulations. Electr. J. Comb. 25, 3 (2018), P3.6. http://www.combinatorics.org/ojs/index.php/eljc/article/view/v25i3p6Google ScholarGoogle Scholar
  22. N. Kowalski, F. Ledoux, and P. Frey. 2014. Block-structured Hexahedral Meshes for CAD Models Using 3D Frame Fields. Procedia Engineering 82 (2014), 59--71.Google ScholarGoogle ScholarCross RefCross Ref
  23. Heng Liu, Paul Zhang, Edward Chien, Justin Solomon, and David Bommes. 2018. Singularity-constrained octahedral fields for hexahedral meshing. ACM Trans. Graph. 37, 4 (2018), 93:1--93:17. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Marco Livesu, Alla Sheffer, Nicholas Vining, and Marco Tarini. 2015. Practical hex-mesh optimization via edge-cone rectification. ACM Trans. Graph. 34, 4 (2015), 141:1--141:11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Max Lyon, David Bommes, and Leif Kobbelt. 2016. HexEx: robust hexahedral mesh extraction. ACM Trans. Graph. 35, 4 (2016), 123:1--123:11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Loïc Maréchal. 2009. Advances in octree-based all-hexahedral mesh generation: Handling sharp features. In Proceedings of the 18th International Meshing Roundtable. 65--84.Google ScholarGoogle ScholarCross RefCross Ref
  27. Scott A. Mitchell. 1996. A characterization of the quadrilateral meshes of a surface which admit a compatible hexahedral mesh of the enclosed volume. In Annual Symposium on Theoretical Aspects of Computer Science. Springer, 465--476. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Scott A. Mitchell. 1999. The all-hex geode-template for conforming a diced tetrahedral mesh to any diced hexahedral mesh. Eng. Comput. (Lond.) 15, 3 (1999), 228--235.Google ScholarGoogle ScholarCross RefCross Ref
  29. Scott A. Mitchell. 2002. A Technical History of Hexahedral Mesh Generation. https://www.sandia.gov/~samitch/_assets/documents/pptx/hex_mesh_history_samitch.ppt. Retrieved January 2, 2019.Google ScholarGoogle Scholar
  30. Scott A. Mitchell and Timothy J. Tautges. 1994. Pillowing doublets: refining a mesh to ensure that faces share at most one edge. In Proceedings of the 4th International Meshing Roundtable. 231--240.Google ScholarGoogle Scholar
  31. Matthias Müller-Hannemann. 1999. Hexahedral mesh generation by successive dual cycle elimination. Eng. Comput. (Lond.) 15, 3 (1999), 269--279.Google ScholarGoogle ScholarCross RefCross Ref
  32. Peter Murdoch, Steven Benzley, Ted Blacker, and Scott A. Mitchell. 1997. The spatial twist continuum: a connectivity based method for representing all-hexahedral finite element meshes. Finite Elem. Anal. Des. 28, 2 (1997), 137--149. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Matthias Nieser, Ulrich Reitebuch, and Konrad Polthier. 2011. CubeCover- parameterization of 3D volumes. Comput. Graph. Forum 30, 5 (2011), 1397--1406.Google ScholarGoogle ScholarCross RefCross Ref
  34. Jeanne Pellerin, Amaury Johnen, Kilian Verhetsel, and Jean-François Remacle. 2018. Identifying combinations of tetrahedra into hexahedra: A vertex based strategy. Computer-Aided Design 105 (2018).Google ScholarGoogle Scholar
  35. Jin Qian and Yongjie Zhang. 2010. Sharp feature preservation in octree-based hexahedral mesh generation for CAD assembly models. In Proceedings of the 19th International Meshing Roundtable. 243--262.Google ScholarGoogle ScholarCross RefCross Ref
  36. Jean-Francois Remacle, Rajesh Gandham, and Tim Warburton. 2016. GPU accelerated spectral finite elements on all-hex meshes. J. Comput. Physics 324 (Nov. 2016), 246--257. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Robert Schneiders. 1995. Open problem. http://www.robertschneiders.de/meshgeneration/open.html. Retrieved January 2, 2019.Google ScholarGoogle Scholar
  38. Robert Schneiders. 1996. A grid-based algorithm for the generation of hexahedral element meshes. Eng. Comput. (Lond.) 12, 3--4 (Sep 1996), 168--177.Google ScholarGoogle Scholar
  39. Jason F. Shepherd and Chris R. Johnson. 2008. Hexahedral mesh generation constraints. Eng. Comput. (Lond.) 24, 3 (Sept. 2008), 195--213. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Hang Si. 2015. TetGen, a Delaunay-based quality tetrahedral mesh generator. ACM Trans. Math. Softw. 41, 2 (2015), 11:1--11:36. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. Dmitry Sokolov, Nicolas Ray, Lionel Untereiner, and Bruno Lévy. 2017. Hexahedral-dominant meshing. ACM Trans. Graph. 36, 4 (2017).Google ScholarGoogle ScholarCross RefCross Ref
  42. Timothy J. Tautges, Ted Blacker, and Scott A. Mitchell. 1996. The whisker weaving algorithm: a connectivity-based method for constructing all-hexahedral finite element meshes. Internat. J. Numer. Methods Engrg. 39, 19 (1996), 3327--3349. <3327::AID-NME2>3.3.CO;2-8Google ScholarGoogle ScholarCross RefCross Ref
  43. William P. Thurston. 1993. Hexahedral decomposition of polyhedra. Posting to sci.math. http://www.ics.uci.edu/~eppstein/gina/Thurston-hexahedra.htmlGoogle ScholarGoogle Scholar
  44. Thomas Toulorge, Christophe Geuzaine, Jean-François Remacle, and Jonathan Lambrechts. 2013. Robust untangling of curvilinear meshes. J. Comput. Physics 254 (2013), 8--26. Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. Kilian Verhetsel, Jeanne Pellerin, and Jean-François Remacle. 2018. A 44-element mesh of Schneiders' pyramid: Bounding the difficulty of hex-meshing problems. In Proceedings of the 27th International Meshing Roundtable. Springer.Google ScholarGoogle Scholar
  46. Jean-Christophe Weill and Franck Ledoux. 2016. Towards an automatic and reliable hexahedral meshing. http://tetrahedron.montefiore.ulg.ac.be/weill.pdf. Retrieved January 2, 2019.Google ScholarGoogle Scholar
  47. Shang Xiang and Jianfei Liu. 2018. A 36-element solution to Schneiders' pyramid hex-meshing problem and a parity-changing template for hex-mesh revision. arXiv preprint arXiv:1807.09415 (2018).Google ScholarGoogle Scholar
  48. Soji Yamakawa and Kenji Shimada. 2002. HEXHOOP: modular templates for converting a hex-dominant mesh to an all-hex mesh. Eng. Comput. (Lond.) 18, 3 (2002), 211--228.Google ScholarGoogle ScholarCross RefCross Ref
  49. Soji Yamakawa and Kenji Shimada. 2003. Fully-automated hex-dominant mesh generation with directionality control via packing rectangular solid cells. Internat. J. Numer. Methods Engrg. 57, 15 (2003), 2099--2129.Google ScholarGoogle ScholarCross RefCross Ref
  50. Soji Yamakawa and Kenji Shimada. 2010. 88-element solution to Schneiders' pyramid hex-meshing problem. International Journal for Numerical Methods in Biomedical Engineering 26, 12 (2010), 1700--1712.Google ScholarGoogle ScholarCross RefCross Ref
  51. Wuyi Yu, Kang Zhang, Shenghua Wan, and Xin Li. 2014. Optimizing polycube domain construction for hexahedral remeshing. Computer-Aided Design 46 (2014), 58--68. Google ScholarGoogle ScholarDigital LibraryDigital Library
  52. Yongjie Zhang, Xinghua Liang, and Guoliang Xu. 2012. A robust 2-refinement algorithm in octree and rhombic dodecahedral tree based all-hexahedral mesh generation. In Proceedings of the 21st International Meshing Roundtable. 155--172.Google ScholarGoogle Scholar
  53. Günter M. Ziegler. 1995. Lectures on polytopes. Graduate Texts in Mathematics, Vol. 152. Springer-Verlag, New York.Google ScholarGoogle Scholar

Index Terms

  1. Finding hexahedrizations for small quadrangulations of the sphere

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in

        Full Access

        • Published in

          cover image ACM Transactions on Graphics
          ACM Transactions on Graphics  Volume 38, Issue 4
          August 2019
          1480 pages
          ISSN:0730-0301
          EISSN:1557-7368
          DOI:10.1145/3306346
          Issue’s Table of Contents

          Copyright © 2019 ACM

          Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 12 July 2019
          Published in tog Volume 38, Issue 4

          Permissions

          Request permissions about this article.

          Request Permissions

          Check for updates

          Qualifiers

          • research-article

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader