skip to main content
research-article

Hierarchical russian roulette for vertex connections

Published:12 July 2019Publication History
Skip Abstract Section

Abstract

While bidirectional path tracing is a well-established light transport algorithm, many samples are required to obtain high-quality results for specular-diffuse-glossy or glossy-diffuse-glossy reflections especially when they are highly glossy. To improve the efficiency for such light path configurations, we propose a hierarchical Russian roulette technique for vertex connections. Our technique accelerates a huge number of Russian roulette operations according to an approximate scattering lobe at an eye-subpath vertex for many cached light-subpath vertices. Our method dramatically reduces the number of random number generations needed for Russian roulette by introducing a hierarchical rejection algorithm which assigns random numbers in a top-down fashion. To efficiently reject light vertices in each hierarchy, we also introduce an efficient approximation of anisotropic scattering lobes used for the probability of Russian roulette. Our technique is easy to integrate into some existing bidirectional path tracing-based algorithms which cache light-subpath vertices (e.g., probabilistic connections, and vertex connection and merging). In addition, unlike existing many-light methods, our method does not restrict multiple importance sampling strategies thanks to the simplicity of Russian roulette. Although the proposed technique does not support perfectly specular surfaces, it significantly improves the efficiency for caustics reflected on extremely glossy surfaces in an unbiased fashion.

Skip Supplemental Material Section

Supplemental Material

References

  1. J. Arvo and D. Kirk. 1990. Particle Transport and Image Synthesis. SIGGRAPH Comput. Graph. 24, 4 (1990), 63--66. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. R. L. Cook and K. E. Torrance. 1982. A Reflectance Model for Computer Graphics. ACM Trans. Graph. 1, 1 (1982), 7--24. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. C. Dachsbacher, J. Křivánek, M. Hašan, A. Arbree, B. Walter, and J. Novák. 2014. Scalable Realistic Rendering with Many-Light Methods. Comput. Graph. Forum 33, 1 (2014), 88--104. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. C. Dachsbacher and M. Stamminger. 2006. Splatting Indirect Illumination. In I3D '06. 93--100. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. T. Davidovič, J. Křivánek, M. Hašan, and P. Slusallek. 2014. Progressive Light Transport Simulation on the GPU: Survey and Improvements. ACM Trans. Graph. 33, 3 (2014), 29:1--29:19. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. A. C. Estevez and C. Kulla. 2018. Importance Sampling of Many Lights with Adaptive Tree Splitting. Proc. ACM Comput. Graph. Interact. Tech. 1, 2 (2018), 25:1--25:17. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. A. C. Estevez and P. Lecocq. 2018. Fast Product Importance Sampling of Environment Maps. In SIGGRAPH '18 Talks. 69:1--69:2. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. I. Georgiev. 2013. Combining Photon Mapping and Bidirectional Path Tracing. In SIGGRAPH Asia '13 Course: State of the Art in Photon Density Estimation. 15:475--15:515.Google ScholarGoogle Scholar
  9. I. Georgiev, J. Křivánek, T. Davidovič, and P. Slusallek. 2012a. Light Transport Simulation with Vertex Connection and Merging. ACM Trans. Graph. 31, 6 (2012), 192:1--192:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. I. Georgiev, J. Křivánek, S. Popov, and P. Slusallek. 2012b. Importance Caching for Complex Illumination. Comput. Graph. Forum 31, 2pt3 (2012), 701--710. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. T. Hachisuka, S. Ogaki, and H. W. Jensen. 2008. Progressive Photon Mapping. ACM Trans. Graph. 27, 5 (2008), 130:1--130:8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. T. Hachisuka, J. Pantaleoni, and H. W. Jensen. 2012. A Path Space Extension for Robust Light Transport Simulation. ACM Trans. Graph. 31, 6 (2012), 191:1--191:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. S. Herholz, O. Elek, J. Schindel, J. Křivánek, and H. P. A. Lensch. 2018. A Unified Manifold Framework for Efficient BRDF Sampling Based on Parametric Mixture Models. In EGSR '18 EI&I. 41--52. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. S. Herholz, O. Elek, J. Vorba, H. Lensch, and J. Křivánek. 2016. Product Importance Sampling for Light Transport Path Guiding. Comput. Graph. Forum 35, 4 (2016), 67--77. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. H. Igehy. 1999. Tracing Ray Differentials. In SIGGRAPH '99. 179--186. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. J. Jendersie. 2019. Variance Reduction via Footprint Estimation in the Presence of Path Reuse. In Ray Tracing Gems: High-Quality and Real-Time Rendering with DXR and Other APIs. Apress, 557--569.Google ScholarGoogle Scholar
  17. A. Keller. 1997. Instant Radiosity. In SIGGRAPH '97. 49--56. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. C. Knaus and M. Zwicker. 2011. Progressive Photon Mapping: A Probabilistic Approach. ACM Trans. Graph. 30, 3 (2011), 25:1--25:13. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. T. Kollig and A. Keller. 2006. Illumination in the Presence of Weak Singularities. In MCQMC '04. 245--257.Google ScholarGoogle Scholar
  20. E. P. Lafortune and Y. D. Willems. 1993. Bi-Directional Path Tracing. In Compugraphics '93. 145--153.Google ScholarGoogle Scholar
  21. O. Olsson, M. Billeter, and E. Persson. 2014. Efficient Real-Time Shading with Many Lights. In SIGGRAPH Asia '14 Courses. 11:1--11:310. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. B. T. Phong. 1975. Illumination for Computer Generated Pictures. Commun. ACM 18, 6 (1975), 311--317. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. S. Popov, R. Ramamoorthi, F. Durand, and G. Drettakis. 2015. Probabilistic Connections for Bidirectional Path Tracing. Comput. Graph. Forum 34, 4 (2015), 75--86. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. J. Stewart. 2015. Compute-Based Tiled Culling. In GPU Pro 6: Advanced Rendering Techniques. A K Peters/CRC Press, 435--458.Google ScholarGoogle Scholar
  25. Y. Tokuyoshi and T. Harada. 2016. Stochastic Light Culling. J. Comput. Graph. Tech. 5, 1 (2016), 35--60.Google ScholarGoogle Scholar
  26. Y. Tokuyoshi and T. Harada. 2017. Stochastic Light Culling for VPLs on GGX Microsurfaces. Comput. Graph. Forum 36, 4 (2017), 55--63. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Y. Tokuyoshi and T. Harada. 2018. Bidirectional Path Tracing Using Backward Stochastic Light Culling. In SIGGRAPH '18 Talks. 70:1--70:2. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. T. S. Trowbridge and K. P. Reitz. 1975. Average Irregularity Representation of a Rough Surface for Ray Reflection. J. Opt. Soc. Am. 65, 5 (1975), 531--536.Google ScholarGoogle ScholarCross RefCross Ref
  29. E. Veach. 1998. Robust Monte Carlo Methods for Light Transport Simulation. Ph.D. Dissertation. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. E. Veach and L. Guibas. 1994. Bidirectional Estimators for Light Transport. In EGWR '94. 147--162.Google ScholarGoogle Scholar
  31. E. Veach and L. J. Guibas. 1995. Optimally Combining Sampling Techniques for Monte Carlo Rendering. In SIGGRAPH '95. 419--428. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. J. Vorba, O. Karlik, M. Šik, T. Ritschel, and J. Křivánek. 2014. On-line Learning of Parametric Mixture Models for Light Transport Simulation. ACM Trans. Graph. 33, 4 (2014), 101:1--101:11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. B. Walter, A. Arbree, K. Bala, and D. P. Greenberg. 2006. Multidimensional Lightcuts. ACM Trans. Graph. 25, 3 (2006), 1081--1088. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. B. Walter, S. Fernandez, A. Arbree, K. Bala, M. Donikian, and D. P. Greenberg. 2005. Lightcuts: A Scalable Approach to Illumination. ACM Trans. Graph. 24, 3 (2005), 1098--1107. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. B. Walter, P. Khungurn, and K. Bala. 2012. Bidirectional Lightcuts. ACM Trans. Graph. 31, 4 (2012), 59:1--59:11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. B. Walter, S. R. Marschner, H. Li, and K. E. Torrance. 2007. Microfacet Models for Refraction Through Rough Surfaces. In EGSR '07. 195--206. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. J. Wang, P. Ren, M. Gong, J. Snyder, and B. Guo. 2009. All-Frequency Rendering of Dynamic, Spatially-Varying Reflectance. ACM Trans. Graph. 28, 5 (2009), 133:1--133:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. K. Xu, W.-L. Sun, Z. Dong, D.-Y. Zhao, R.-D. Wu, and S.-M. Hu. 2013. Anisotropic Spherical Gaussians. ACM Trans. Graph. 32, 6 (2013), 209:1--209:11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. T. Zirr, J. Hanika, and C. Dachsbacher. 2018. Reweighting Firefly Samples for Improved Finite-Sample Monte Carlo Estimates. Comput. Graph. Forum 37, 6 (2018), 410--421.Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. Hierarchical russian roulette for vertex connections

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in

    Full Access

    • Published in

      cover image ACM Transactions on Graphics
      ACM Transactions on Graphics  Volume 38, Issue 4
      August 2019
      1480 pages
      ISSN:0730-0301
      EISSN:1557-7368
      DOI:10.1145/3306346
      Issue’s Table of Contents

      Copyright © 2019 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 12 July 2019
      Published in tog Volume 38, Issue 4

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader