skip to main content
research-article

Vibration-minimizing motion retargeting for robotic characters

Published:12 July 2019Publication History
Skip Abstract Section

Abstract

Creating animations for robotic characters is very challenging due to the constraints imposed by their physical nature. In particular, the combination of fast motions and unavoidable structural deformations leads to mechanical oscillations that negatively affect their performances. Our goal is to automatically transfer motions created using traditional animation software to robotic characters while avoiding such artifacts. To this end, we develop an optimization-based, dynamics-aware motion retargeting system that adjusts an input motion such that visually salient low-frequency, large amplitude vibrations are suppressed. The technical core of our animation system consists of a differentiable dynamics simulator that provides constraint-based two-way coupling between rigid and flexible components. We demonstrate the efficacy of our method through experiments performed on a total of five robotic characters including a child-sized animatronic figure that features highly dynamic drumming and boxing motions.

Skip Supplemental Material Section

Supplemental Material

References

  1. Steven S An, Theodore Kim, and Doug L James. 2008. Optimizing cubature for efficient integration of subspace deformations. ACM Trans. Graph. 27, 5 (2008), 165. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Uri M. Ascher and Linda R. Petzold. 1998. Computer Methods for Ordinary Differential Equations and Differential-Algebraic Equations (1st ed.). Society for Industrial and Applied Mathematics, Philadelphia, PA, USA. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Moritz Bächer, Stelian Coros, and Bernhard Thomaszewski. 2015. LinkEdit: Interactive Linkage Editing Using Symbolic Kinematics. ACM Trans. Graph. 34, 4, Article 99 (July 2015), 8 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. David Baraff. 1996. Linear-time dynamics using Lagrange multipliers. In Proceedings of the 23rd annual conference on Computer graphics and interactive techniques. ACM, 137--146. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Jernej Barbič, Marco da Silva, and Jovan Popović. 2009. Deformable object animation using reduced optimal control. ACM Trans. Graph. 28, 3 (2009), 53. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Jernej Barbič and Yili Zhao. 2011. Real-time large-deformation substructuring. ACM Trans. Graph. 30, 4, 91. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Jernej Barbič and Doug L. James. 2005. Real-Time Subspace Integration for St. Venant-Kirchhoff Deformable Models. ACM Trans. Graph. 24, 3 (July 2005), 982--990. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. J. Baumgarte. 1972. Stabilization of constraints and integrals of motion in dynamical systems. Computer Methods in Applied Mechanics and Engineering 1, 1 (1972), 1--16.Google ScholarGoogle ScholarCross RefCross Ref
  9. James M. Bern, Kai-Hung Chang, and Stelian Coros. 2017. Interactive design of animated plushies. ACM Trans. Graph. 36, 4 (2017), 80:1--80:11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. K. E. Brenan, S. L. Campbell, and L. R. Petzold. 1996. Numerical Solution of Initial-Value Problems in Differential-Algebraic Equations. SIAM.Google ScholarGoogle Scholar
  11. Yang Cao, Shengtai Li, Linda Petzold, and Radu Serban. 2003. Adjoint sensitivity analysis for differential-algebraic equations: The adjoint DAE system and its numerical solution. SIAM Journal on Scientific Computing 24, 3 (2003), 1076--1089. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Duygu Ceylan, Wilmot Li, Niloy J. Mitra, Maneesh Agrawala, and Mark Pauly. 2013. Designing and Fabricating Mechanical Automata from Mocap Sequences. ACM Trans. Graph. 32, 6, Article 186 (Nov. 2013), 11 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Desai Chen, David I. W. Levin, Wojciech Matusik, and Danny M. Kaufman. 2017. Dynamics-aware Numerical Coarsening for Fabrication Design. ACM Trans. Graph. 36, 4, Article 84 (July 2017), 15 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Stelian Coros, Bernhard Thomaszewski, Gioacchino Noris, Shinjiro Sueda, Moira Forberg, Robert W. Sumner, Wojciech Matusik, and Bernd Bickel. 2013. Computational Design of Mechanical Characters. ACM Trans. Graph. 32, 4, Article 83 (2013), 12 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Tao Du, Adriana Schulz, Bo Zhu, Bernd Bickel, and Wojciech Matusik. 2016. Computational multicopter design. ACM Trans. Graph. 35, 6 (2016), 227:1--227:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. D Economou, C Lee, C Mavroidis, and I Antoniadis. 2000. Robust vibration suppression in flexible payloads carried by robot manipulators using digital filtering of joint trajectories. In Intl. Symposium on Robotics and Automation. 244--249.Google ScholarGoogle Scholar
  17. Nico Galoppo, Miguel A. Otaduy, William Moss, Jason Sewall, Sean Curtis, and Ming C. Lin. 2009. Controlling Deformable Material with Dynamic Morph Targets. In Proceedings of the 2009 Symposium on Interactive 3D Graphics and Games (I3D '09). ACM, New York, NY, USA, 39--47. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Damien Gauge, Stelian Coros, Sandro Mani, and Bernhard Thomaszewski. 2014. Interactive Design of Modular Tensegrity Characters. In The Eurographics / ACM SIGGRAPH Symposium on Computer Animation, SCA 2014, Copenhagen, Denmark, 2014. 131--138. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Moritz Geilinger, Roi Poranne, Ruta Desai, Bernhard Thomaszewski, and Stelian Coros. 2018. Skaterbots: Optimization-based design and motion synthesis for robotic creatures with legs and wheels. ACM Trans. Graph. 37, 4 (2018), 160. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Sehoon Ha, Stelian Coros, Alexander Alspach, Joohyung Kim, and Katsu Yamane. 2017. Joint optimization of robot design and motion parameters using the implicit function theorem. In Robotics: Science and Systems.Google ScholarGoogle Scholar
  21. Kris K Hauser, Chen Shen, and James F O'Brien. 2003. Interactive Deformation Using Modal Analysis with Constraints.. In Graphics Interface, Vol. 3. 16--17.Google ScholarGoogle Scholar
  22. Vladímir Villaverde Huertas and Boris Rohal'-Ilkiv. 2012. Vibration suppression of a flexible structure. Procedia Engineering 48 (2012), 233--241.Google ScholarGoogle ScholarCross RefCross Ref
  23. Doug L James and Dinesh K Pai. 2002. DyRT: dynamic response textures for real time deformation simulation with graphics hardware. ACM Trans. Graph. 21, 3, 582--585. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Junggon Kim and Nancy S Pollard. 2011. Fast simulation of skeleton-driven deformable body characters. ACM Trans. Graph. 30, 5 (2011), 121. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Theodore Kim and Doug L James. 2012. Physics-based character skinning using multidomain subspace deformations. IEEE transactions on visualization and computer graphics 18, 8 (2012), 1228--1240. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Seunghwan Lee, Ri Yu, Jungnam Park, Mridul Aanjaneya, Eftychios Sifakis, and Jehee Lee. 2018. Dexterous manipulation and control with volumetric muscles. ACM Trans. Graph. 37, 4 (2018), 57. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Siwang Li, Jin Huang, Fernando de Goes, Xiaogang Jin, Hujun Bao, and Mathieu Desbrun. 2014. Space-time editing of elastic motion through material optimization and reduction. ACM Trans. Graph. 33, 4 (2014), 108. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Jacques Louis Lions. 1971. Optimal control of systems governed by partial differential equations. Vol. 170. Springer Berlin.Google ScholarGoogle Scholar
  29. Libin Liu, KangKang Yin, Bin Wang, and Baining Guo. 2013. Simulation and control of skeleton-driven soft body characters. ACM Trans. Graph. 32, 6 (2013), 215. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Mickaël Ly, Romain Casati, Florence Bertails-Descoubes, Mélina Skouras, and Laurence Boissieux. 2018. Inverse Elastic Shell Design with Contact and Friction. ACM Trans. Graph. 37, 6, Article 201 (Dec. 2018), 16 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Antoine McNamara, Adrien Treuille, Zoran Popović, and Jos Stam. 2004. Fluid control using the adjoint method. ACM Trans. Graph. 23, 3 (2004), 449--456. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Vittorio Megaro, Bernhard Thomaszewski, Maurizio Nitti, Otmar Hilliges, Markus Gross, and Stelian Coros. 2015. Interactive design of 3D-printable robotic creatures. ACM Trans. Graph. 34, 6 (2015), 216. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Vittorio Megaro, Jonas Zehnder, Moritz Bächer, Stelian Coros, Markus Gross, and Bernhard Thomaszewski. 2017. A Computational Design Tool for Compliant Mechanisms. ACM Trans. Graph. 36, 4, Article 82 (July 2017), 12 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Matthias Müller, Bruno Heidelberger, Matthias Teschner, and Markus Gross. 2005. Meshless Deformations Based on Shape Matching. ACM Trans. Graph. 24, 3 (July 2005), 471--478. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Jorge Nocedal and Stephen J. Wright. 2006. Numerical Optimization, second edition. World Scientific.Google ScholarGoogle Scholar
  36. Carmine Maria Pappalardo and Domenico Guida. 2018. Use of the Adjoint Method for Controlling the Mechanical Vibrations of Nonlinear Systems. Machines 6, 2 (2018), 19.Google ScholarGoogle ScholarCross RefCross Ref
  37. Jesús Pérez, Bernhard Thomaszewski, Stelian Coros, Bernd Bickel, José A. Canabal, Robert Sumner, and Miguel A. Otaduy. 2015. Design and Fabrication of Flexible Rod Meshes. ACM Trans. Graph. 34, 4, Article 138 (July 2015), 12 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Jovan Popović, Steven M Seitz, and Michael Erdmann. 2003. Motion sketching for control of rigid-body simulations. ACM Trans. Graph. 22, 4 (2003), 1034--1054. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Christian Schulz, Christoph von Tycowicz, Hans-Peter Seidel, and Klaus Hildebrandt. 2014. Animating deformable objects using sparse spacetime constraints. ACM Trans. Graph. 33, 4 (2014), 109. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Tamar Shinar, Craig Schroeder, and Ronald Fedkiw. 2008. Two-way coupling of rigid and deformable bodies. In Proceedings of the 2008 ACM SIGGRAPH/Eurographics Symposium on Computer Animation. Eurographics Association, 95--103. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. Weiguang Si, Sung-Hee Lee, Eftychios Sifakis, and Demetri Terzopoulos. 2014. Realistic biomechanical simulation and control of human swimming. ACM Trans. Graph. 34, 1 (2014), 10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. Mélina Skouras, Bernhard Thomaszewski, Stelian Coros, Bernd Bickel, and Markus H. Gross. 2013. Computational design of actuated deformable characters. ACM Trans. Graph. 32, 4 (2013), 82:1--82:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. Breannan Smith, Fernando de Goes, and Theodore Kim. 2018. Stable Neo-Hookean Flesh Simulation. ACM Trans. Graph. 37, 2 (2018), 12:1--12:15. Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. Peng Song, Xiaofei Wang, Xiao Tang, Chi-Wing Fu, Hongfei Xu, Ligang Liu, and Niloy J. Mitra. 2017. Computational design of wind-up toys. ACM Trans. Graph. 36, 6 (2017), 238:1--238:13. Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. Jie Tan, Yuting Gu, Greg Turk, and C. Karen Liu. 2011. Articulated swimming creatures. ACM Trans. Graph. 30, 4 (2011), 58:1--58:12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. Bernhard Thomaszewski, Stelian Coros, Damien Gauge, Vittorio Megaro, Eitan Grinspun, and Markus Gross. 2014. Computational Design of Linkage-based Characters. ACM Trans. Graph. 33, 4, Article 64 (July 2014), 9 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  47. Maxime Tournier, Matthieu Nesme, Benjamin Gilles, and François Faure. 2015. Stable constrained dynamics. ACM Trans. Graph. 34, 4 (2015), 132:1--132:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  48. Adrien Treuille, Antoine McNamara, Zoran Popović, and Jos Stam. 2003. Keyframe control of smoke simulations. ACM Trans. Graph. 22, 3 (2003), 716--723. Google ScholarGoogle ScholarDigital LibraryDigital Library
  49. Nobuyuki Umetani, Yuki Koyama, Ryan Schmidt, and Takeo Igarashi. 2014. Pteromys: interactive design and optimization of free-formed free-flight model airplanes. ACM Trans. Graph. 33, 4 (2014), 65:1--65:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  50. Christoph von Tycowicz, Christian Schulz, Hans-Peter Seidel, and Klaus Hildebrandt. 2013. An efficient construction of reduced deformable objects. ACM Trans. Graph. 32, 6 (2013), 213. Google ScholarGoogle ScholarDigital LibraryDigital Library
  51. Andrew Witkin and David Baraff. 1997. Physically Based Modeling: Principles and Practice. In ACM SIGGRAPH 1997 Courses (SIGGRAPH '97). New York, NY, USA.Google ScholarGoogle Scholar
  52. Chris Wojtan, Peter J Mucha, and Greg Turk. 2006. Keyframe control of complex particle systems using the adjoint method. In ACM SIGGRAPH/Eurographics symposium on Computer animation. Eurographics Association, 15--23. Google ScholarGoogle ScholarDigital LibraryDigital Library
  53. Hongyi Xu and Jernej Barbič. 2016. Pose-space subspace dynamics. ACM Trans. Graph. 35, 4 (2016), 35. Google ScholarGoogle ScholarDigital LibraryDigital Library
  54. Hongyi Xu, Espen Knoop, Stelian Coros, and Moritz Bächer. 2018. Bend-it: Design and Fabrication of Kinetic Wire Characters. ACM Trans. Graph. 37, 6 (2018), 239:1--239:15. Google ScholarGoogle ScholarDigital LibraryDigital Library
  55. Ran Zhang, Thomas Auzinger, Duygu Ceylan, Wilmot Li, and Bernd Bickel. 2017. Functionality-aware retargeting of mechanisms to 3D shapes. ACM Trans. Graph. 36, 4 (2017), 81:1--81:13. Google ScholarGoogle ScholarDigital LibraryDigital Library
  56. Tong Zhou, Andrew A Goldenberg, and Jean W Zu. 2002. Modal force based input shaper for vibration suppression of flexible payloads. In Robotics and Automation, 2002. Proceedings. ICRA'02. IEEE International Conference on, Vol. 3. IEEE, 2430--2435.Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. Vibration-minimizing motion retargeting for robotic characters

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in

    Full Access

    • Published in

      cover image ACM Transactions on Graphics
      ACM Transactions on Graphics  Volume 38, Issue 4
      August 2019
      1480 pages
      ISSN:0730-0301
      EISSN:1557-7368
      DOI:10.1145/3306346
      Issue’s Table of Contents

      Copyright © 2019 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 12 July 2019
      Published in tog Volume 38, Issue 4

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader