skip to main content
research-article
Public Access

A symmetric objective function for ICP

Published:12 July 2019Publication History
Skip Abstract Section

Abstract

The Iterative Closest Point (ICP) algorithm, commonly used for alignment of 3D models, has previously been defined using either a point-to-point or point-to-plane objective. Alternatively, researchers have proposed computationally-expensive methods that directly minimize the distance function between surfaces. We introduce a new symmetrized objective function that achieves the simplicity and computational efficiency of point-to-plane optimization, while yielding improved convergence speed and a wider convergence basin. In addition, we present a linearization of the objective that is exact in the case of exact correspondences. We experimentally demonstrate the improved speed and convergence basin of the symmetric objective, on both smooth models and challenging cases involving noise and partial overlap.

Skip Supplemental Material Section

Supplemental Material

papers_473.mp4

References

  1. Dror Aiger, Niloy J. Mitra, and Daniel Cohen-Or. 2008. 4-Points Congruent Sets for Robust Pairwise Surface Registration. ACM Trans. Graph. 27, 3, Article 85 (Aug. 2008). Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Paul J. Besl and Neil D. McKay. 1992. A Method for Registration of 3-D Shapes. IEEE Trans. PAMI 14, 2 (Feb. 1992), 239--256. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Sofien Bouaziz, Andrea Tagliasacchi, and Mark Pauly. 2013. Sparse Iterative Closest Point. In Proc. SGP. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Benedict Brown and Szymon Rusinkiewicz. 2007. Global Non-Rigid Alignment of 3-D Scans. ACM Trans. Graph. 26, 3, Article 21 (July 2007). Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Yang Chen and Gérard Medioni. 1992. Object Modelling by Registration of Multiple Range Images. Image and Vision Computing 10, 3 (April 1992), 145--155. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Dmitry Chetverikov, Dmitry Stepanov, and Pavel Krsek. 2005. Robust Euclidean Alignment of 3D Point Sets: The Trimmed Iterative Closest Point Algorithm. Image and Vision Computing 23, 3 (March 2005), 299--309.Google ScholarGoogle ScholarCross RefCross Ref
  7. Brian Curless and Marc Levoy. 1996. A Volumetric Method for Building Complex Models from Range Images. In Proc. SIGGRAPH. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Yago Díez, Ferran Roure, Xavier Lladó, and Joaquim Salvi. 2015. A Qualitative Review on 3D Coarse Registration Methods. ACM Comput. Surv. 47, 3, Article 45 (Feb. 2015). Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Chitra Dorai, Gang Wang, Anil K. Jain, and Carolyn Mercer. 1998. Registration and Integration of Multiple Object Views for 3D Model Construction. IEEE Trans. PAMI 20, 1 (Jan. 1998), 83--89. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. David W. Eggert, Adele Lorusso, and Robert B. Fisher. 1997. Estimating 3-D Rigid Body Transformations: A Comparison of Four Major Algorithms. Machine Vision and Applications 9, 5--6 (March 1997), 272--290. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Andrew W. Fitzgibbon. 2001. Robust Registration of 2D and 3D Point Sets. In Proc. BMVC.Google ScholarGoogle ScholarCross RefCross Ref
  12. Natasha Gelfand, Leslie Ikemoto, Szymon Rusinkiewicz, and Marc Levoy. 2003. Geometrically Stable Sampling for the ICP Algorithm. In Proc. 3DIM.Google ScholarGoogle ScholarCross RefCross Ref
  13. Natasha Gelfand, Niloy J. Mitra, Leonidas Guibas, and Helmut Pottmann. 2005. Robust Global Registration. In Proc. SGP. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Maciej Halber and Thomas Funkhouser. 2017. Fine-to-Coarse Global Registration of RGB-D Scans. In Proc. CVPR.Google ScholarGoogle ScholarCross RefCross Ref
  15. Daniel F. Huber and Martial Hebert. 2003. Fully Automatic Registration of Multiple 3D Data Sets. Image and Vision Computing 21, 7 (July 2003), 637--650.Google ScholarGoogle ScholarCross RefCross Ref
  16. Shahram Izadi, David Kim, Otmar Hilliges, David Molyneaux, Richard Newcombe, Pushmeet Kohli, Jamie Shotton, Steve Hodges, Dustin Freeman, Andrew Davison, and Andrew Fitzgibbon. 2011. KinectFusion: Real-time 3D Reconstruction and Interaction Using a Moving Depth Camera. In Proc. UIST. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Peter Kovesi. 2015. Good Colour Maps: How to Design Them. arXiv:1509.03700.Google ScholarGoogle Scholar
  18. Stefan Leopoldseder, Helmut Pottmann, and Hongkai Zhao. 2003. The d<sup>2</sup>-Tree: A Hierarchical Representation of the Squared Distance Function. Technical Report 101. Institute of Geometry, Vienna University of Technology.Google ScholarGoogle Scholar
  19. Hiêp Quang Luong, Michiel Vlaminck, Werner Goeman, and Wilfried Philips. 2016. Consistent ICP for the Registration of Sparse and Inhomogeneous Point Clouds. In Proc. Int. Conf. on Communications and Electronics (ICCE).Google ScholarGoogle ScholarCross RefCross Ref
  20. Takeshi Masuda, Katsuhiko Sakaue, and Naokazu Yokoya. 1996. Registration and Integration of Multiple Range Images for 3-D Model Construction. In Proc. ICPR. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Niloy J. Mitra, Natasha Gelfand, Helmut Pottmann, and Leonidas Guibas. 2004. Registration of Point Cloud Data from a Geometric Optimization Perspective. In Proc. SGP. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Tomáš Pajdla and Luc Van Gool. 1995. Matching of 3-D Curves Using Semi-Differential Invariants. In Proc. ICCV. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Fran cois Pomerleau, Francis Colas, and Roland Siegwart. 2015. A Review of Point Cloud Registration Algorithms for Mobile Robotics. Foundations and Trends in Robotics 4, 1 (May 2015), 1--104. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Helmut Pottmann, Qi-Xing Huang, Yong-Liang Yang, and Shi-Min Hu. 2006. Geometry and Convergence Analysis of Algorithms for Registration of 3D Shapes. IJCV 67, 3 (May 2006), 277--296. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Kari Pulli. 1999. Multiview Registration for Large Data Sets. In Proc. 3DIM. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Szymon Rusinkiewicz and Marc Levoy. 2001. Efficient Variants of the ICP Algorithm. In Proc. 3DIM.Google ScholarGoogle ScholarCross RefCross Ref
  27. Aleksandr V. Segal, Dirk Haehnel, and Sebastian Thrun. 2009. Generalized-ICP. In Proc. RSS.Google ScholarGoogle Scholar
  28. Jürgen Sturm, Nikolas Engelhard, Felix Endres, Wolfram Burgard, and Daniel Cremers. 2012. A Benchmark for the Evaluation of RGB-D SLAM Systems. In Proc. IROS.Google ScholarGoogle ScholarCross RefCross Ref
  29. Andrea Tagliasacchi, Matthias Schroeder, Anastasia Tkach, Sofien Bouaziz, Mario Botsch, and Mark Pauly. 2015. Robust Articulated-ICP for Real-Time Hand Tracking. In Proc. SGP.Google ScholarGoogle ScholarCross RefCross Ref
  30. Anastasia Tkach, Mark Pauly, and Andrea Tagliasacchi. 2016. Sphere-Meshes for Real-Time Hand Modeling and Tracking. ACM Trans. Graph. 35, 6, Article 222 (Nov. 2016). Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Greg Turk and Marc Levoy. 1994. Zippered Polygon Meshes from Range Images. In Proc. SIGGRAPH. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Jiaolong Yang, Hongdong Li, Dylan Campbell, and Yunde Jia. 2016. Go-ICP: A Globally Optimal Solution to 3D ICP Point-Set Registration. IEEE Trans. PAMI 38, 11 (Nov. 2016), 2241--2254. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. A symmetric objective function for ICP

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in

    Full Access

    • Published in

      cover image ACM Transactions on Graphics
      ACM Transactions on Graphics  Volume 38, Issue 4
      August 2019
      1480 pages
      ISSN:0730-0301
      EISSN:1557-7368
      DOI:10.1145/3306346
      Issue’s Table of Contents

      Copyright © 2019 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 12 July 2019
      Published in tog Volume 38, Issue 4

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader