skip to main content
research-article

Synthetic silviculture: multi-scale modeling of plant ecosystems

Published:12 July 2019Publication History
Skip Editorial Notes Section

Editorial Notes

The authors have requested minor, non-substantive changes to the VoR and, in accordance with ACM policies, a Corrected VoR was published on March 1, 2022. For reference purposes the VoR may still be accessed via the Supplemental Material section on this page.

Skip Abstract Section

Abstract

Due to the enormous amount of detail and the interplay of various biological phenomena, modeling realistic ecosystems of trees and other plants is a challenging and open problem. Previous research on modeling plant ecologies has focused on representations to handle this complexity, mostly through geometric simplifications, such as points or billboards. In this paper we describe a multi-scale method to design large-scale ecosystems with individual plants that are realistically modeled and faithfully capture biological features, such as growth, plant interactions, different types of tropism, and the competition for resources. Our approach is based on leveraging inter- and intra-plant self-similarities for efficiently modeling plant geometry. We focus on the interactive design of plant ecosystems of up to 500K plants, while adhering to biological priors known in forestry and botany research. The introduced parameter space supports modeling properties of nine distinct plant ecologies while each plant is represented as a 3D surface mesh. The capabilities of our framework are illustrated through numerous models of forests, individual plants, and validations.

Skip Supplemental Material Section

Supplemental Material

papers_482.mp4

References

  1. L. Amissah, G. M. J. Mohren, F. Bongers, W. D. Hawthorne, and L. Poorter. 2014. Rainfall and temperature affect tree species distribution in Ghana. Journal of Tropical Ecology 30, 5 (2014), 435--446.Google ScholarGoogle ScholarCross RefCross Ref
  2. J. Andel, J. P. Bakker, and A. P. Grootjans. 1993. Mechanisms of vegetation succession: a review of concepts and perspectives. Acta Botanica Neerlandica 42, 4 (1993), 413--433.Google ScholarGoogle ScholarCross RefCross Ref
  3. C. Andújar, A. Chica, M. A. Vico, S. Moya, and P. Brunet. 2014. Inexpensive Reconstruction and Rendering of Realistic Roadside Landscapes. Comput. Graph. Forum 33, 6 (Sept. 2014), 101--117. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. M. Aono and T.L. Kunii. 1984. Botanical Tree Image Generation. IEEE Comput. Graph. Appl. 4(5) (1984), 10--34. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. O. Argudo, A. Chica, and C. Andujar. 2016. Single-picture Reconstruction and Rendering of Trees for Plausible Vegetation Synthesis. Comput. Graph. 57, C (2016), 55--67. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. D. Barthélémy. 1986. Establishment of modular growth in a tropical tree: Isertia coccinea Vahl. (Rubiaceae). Philosophical Transactions of the Royal Society of London B: Biological Sciences 313, 1159 (1986), 89--94.Google ScholarGoogle ScholarCross RefCross Ref
  7. D. Barthélémy and Y. Caraglio. 2007. Plant architecture: a dynamic, multilevel and comprehensive approach to plant form, structure and ontogeny. Annals of botany 99 3 (2007), 375--407.Google ScholarGoogle ScholarCross RefCross Ref
  8. N. Bassuk, D. F. Curtis, BZ Marranca, and B. Neal. 2009. Recommended Urban Trees: Site Assessment and Tree Selection for Stress Tolerance. Cornell University, Department of Horticulture (2009).Google ScholarGoogle Scholar
  9. B. Beneš, N. Andrysco, and O. Št'ava. 2009. Interactive Modeling of Virtual Ecosystems (NPH'09). 9--16. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. K. Boulanger, K. Bouatouch and S. Pattanaik. 2008. Rendering Trees with Indirect Lighting in Real Time (EGSR '08). 1189--1198. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. D. Bradley, D. Nowrouzezahrai, and P. Beardsley. 2013. Image-based Reconstruction Synthesis of Dense Foliage. ACM Trans. Graph. 32, 4, Article 74 (2013), 74:1--74:10 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. E. Bruneton and F. Neyret. 2012. Real-time Realistic Rendering and Lighting of Forests. Comput. Graph. Forum 31, 2pt1 (2012), 373--382. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. H. Buckley, B. Case, R. Vallejos, J. Camarero, E. Gutiérrez, E. Liang, Y. Wang, and A. M. Ellison. 2016. Detecting Ecological Patterns Along Environmental Gradients: Alpine Treeline Ecotones. CHANCE 29 (04 2016), 10--15.Google ScholarGoogle Scholar
  14. G. Cordonnier, E. Galin, J. Gain, B. Benes, E. Guérin, A. Peytavie, and M.-P. Cani. 2017. Authoring Landscapes by Combining Ecosystem and Terrain Erosion Simulation. ACM Trans. Graph. 36, 4, Article 134 (2017), 134:1--134:12 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. P. de Reffye, C. Edelin, J. Françon, M. Jaeger, and C. Puech. 1988. Plant Models Faithful to Botanical Structure and Development. SIGGRAPH Comput. Graph. 22, 4 (1988), 151--158. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. P. Decaudin and F. Neyret. 2004. Rendering Forest Scenes in Real-time (EGSR'04). 93--102. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. O. Deussen, C. Colditz, M. Stamminger, and G. Drettakis. 2002. Interactive Visualization of Complex Plant Ecosystems. VIS '02 (2002), 219--226. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. O. Deussen, P. Hanrahan, B. Lintermann, R. Měch, M. Pharr, and Przemyslaw Prusinkiewicz. 1998. Realistic Modeling and Rendering of Plant Ecosystems. ACM Trans. Graph. (1998), 275--286.Google ScholarGoogle Scholar
  19. J. Digby and R. D. Firn. 1995. The gravitropic set-point angle (GSA): the identification of an important developmentally controlled variable governing plant architecture. Plant Cell Environ 18, 12 (1995), 1434--40.Google ScholarGoogle ScholarCross RefCross Ref
  20. J. I. Drever. 2005. Surface and Ground Water, Weathering, and Soils. Elsevier Science.Google ScholarGoogle Scholar
  21. C. Eloy, M. Fournier, A. Lacointe, and B. Moulia. 2017. Wind loads and competition for light sculpt trees into self-similar structures. In Nature Communications.Google ScholarGoogle Scholar
  22. J. Gain, H. Long, G. Cordonnier, and M.-P. Cani. 2017. EcoBrush: Interactive Control of Visually Consistent Large-Scale Ecosystems. Comput. Graph. Forum 36, 2 (May 2017), 63--73. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. G. Gilet, A. Meyer, and F. Neyret. 2005. Point-based Rendering of Trees (NPH'05). 67--73. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. C. Godin. 2000. Representing and encoding plant architecture: A review. Ann. For. Sci. 57, 5 (2000), 413--438.Google ScholarGoogle ScholarCross RefCross Ref
  25. J. Gumbau, M. Chover, I. Remolar, and C. Rebollo. 2011. View-dependent pruning for real-time rendering of trees. Computers and Graphics 35, 2 (2011), 364 -- 374. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. R. Habel, A. Kusternig, and M. Wimmer. 2009. Physically Guided Animation of Trees. Comp. Graph. Forum 28, 2 (2009), 523--532.Google ScholarGoogle ScholarCross RefCross Ref
  27. T. Hädrich, B. Benes, O. Deussen, and S. Pirk. 2017. Interactive Modeling and Authoring of Climbing Plants. Comput. Graph. Forum 36, 2 (2017), 49--61. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. F. Hallé, R. A. A. Oldeman, and P. B. Tomlinson. 1978. Tropical Trees and Forests - An Architectural Analysis. (1978).Google ScholarGoogle Scholar
  29. M. Heydari and A. Mahdavi. 2009. The Survey of Plant Species Diversity and Richness Between Ecological Species Groups (Zagros Ecosystem, Ilam). 9 (2009).Google ScholarGoogle Scholar
  30. Shaojun Hu, Zhengrong Li, Zhang Zhiyi, Dongjian He, and Michael Wimmer. 2017. Efficient Tree Modeling from Airborne LiDAR Point Clouds. Computers & Graphics 67 (05 2017). Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. T. Ijiri, S. Owada, and T. Igarashi. 2006. Seamless Integration of Initial Sketching and Subsequent Detail Editing in Flower Modeling. Comp. Graph. Forum 25, 3 (2006), 617--624.Google ScholarGoogle ScholarCross RefCross Ref
  32. M. Jaeger and P. de Reffye. 1992. Basic concepts of computer simulation of plant growth. 17 (1992).Google ScholarGoogle Scholar
  33. M. Jaeger and J. Teng. 2003. Tree and plant volume imaging - An introductive study towards voxelized functional landscapes. PMA (2003).Google ScholarGoogle Scholar
  34. R. J. Keenan. 2015. Climate change impacts and adaptation in forest management: a review. Annals of Forest Science 72, 2 (2015), 145--167.Google ScholarGoogle ScholarCross RefCross Ref
  35. B. Lane and P. Prusinkiewicz. 2002. Generating Spatial Distributions for Multilevel Models of Plant Communities. Graphics Interface (2002), 69--80.Google ScholarGoogle Scholar
  36. C. Li, O. Deussen, Y.-Z. Song, P. Willis, and P. Hall. 2011. Modeling and Generating Moving Trees from Video. ACM Trans. Graph. 30, 6, Article 127 (2011), 127:1--127:12 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. A. Lindenmayer. 1968. Mathematical models for cellular interaction in development. J. Theor. Biol. Parts I and II, 18 (1968), 280--315.Google ScholarGoogle ScholarCross RefCross Ref
  38. B. Lintermann and O. Deussen. 1999. Interactive Modeling of Plants. IEEE Comput. Graph. Appl. 19, 1 (1999), 56--65. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Y. Livny, S. Pirk, Z. Cheng, F. Yan, O. Deussen, D. Cohen-Or, and B. Chen. 2011. Texture-lobes for Tree Modelling. ACM Trans. Graph. 30, 4, Article 53 (2011), 10 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. S. Longay, A. Runions, F. Boudon, and P. Prusinkiewicz. 2012. TreeSketch: interactive procedural modeling of trees on a tablet. In Proc. of the Intl. Symp. on SBIM. 107--120. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. L. Mander, S. C. Dekker, M. Li, W. Mio, S. W. Punyasena, and T. M. Lenton. 2017. A morphometric analysis of vegetation patterns in dryland ecosystems. Royal Society Open Science 4 (February 2017).Google ScholarGoogle Scholar
  42. G. R. McGhee. 1999. Theoretical Morphology: The Concept and Its Applications. (1999).Google ScholarGoogle Scholar
  43. D. Mueller-Dombois. 1992. A Natural Dieback Theory, cohort senescence as an alternative to the decline disease theory. (01 1992), 26--37.Google ScholarGoogle Scholar
  44. M. Müller, V. Casser, J. Lahoud, N. Smith, and B. Ghanem. 2018. Sim4CV: A Photo-Realistic Simulator for Computer Vision Applications. IJCV 126, 9 (2018), 902--919. Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. R. Měch and P. Prusinkiewicz. 1996. Visual models of plants interacting with their environment. In Proc. of SIGGRAPH. ACM, 397--410. Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. B. Neubert, T. Franken, and O. Deussen. 2007. Approximate Image-based Tree-modeling Using Particle Flows. ACM Trans. Graph. 26, 3, Article 88 (2007). Google ScholarGoogle ScholarDigital LibraryDigital Library
  47. B. Neubert, S. Pirk, O. Deussen, and C. Dachsbacher. 2011. Improved Model- and View-Dependent Pruning of Large Botanical Scenes. Comp. Graph. Forum 30, 6 (2011), 1708--1718.Google ScholarGoogle ScholarCross RefCross Ref
  48. M. Okabe, S. Owada, and T. Igarashi. 2007. Interactive Design of Botanical Trees Using Freehand Sketches and Example-based Editing. In ACM SIGGRAPH Courses. ACM, Article 26. Google ScholarGoogle ScholarDigital LibraryDigital Library
  49. P. E. Oppenheimer. 1986. Real time design and animation of fractal plants and trees. Proc. of SIGGRAPH 20, 4 (1986), 55--64. Google ScholarGoogle ScholarDigital LibraryDigital Library
  50. W. Palubicki, K. Horel, S. Longay, A. Runions, B. Lane, R. Měch, and P. Prusinkiewicz. 2009. Self-organizing Tree Models for Image Synthesis. ACM Trans. Graph. 28, 3, Article 58 (2009), 10 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  51. S. Pirk, M. Jarząbek, T. Hädrich, D. L. Michels, and W. Palubicki. 2017. Interactive Wood Combustion for Botanical Tree Models. ACM Trans. Graph. 36, 6, Article 197 (Nov. 2017), 12 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  52. S. Pirk, T. Niese, T. Hädrich, B. Benes, and O. Deussen. 2014. Windy Trees: Computing Stress Response for Developmental Tree Models. ACM Trans. Graph. 33, 6, Article 204 (2014), 11 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  53. S. Pirk, O. Stava, J. Kratt, M. A. M. Said, B. Neubert, R. Měch, B. Benes, and O. Deussen. 2012. Plastic trees: interactive self-adapting botanical tree models. ACM Trans. Graph. 31, 4, Article 50 (2012), 10 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  54. P. Prusinkiewicz. 1986. Graphical applications of L-systems. In Proc. on Graph. Interf. 247--253. Google ScholarGoogle ScholarDigital LibraryDigital Library
  55. P. Prusinkiewicz and Aristid Lindenmayer. 1990. The Algorithmic Beauty of Plants. Springer-Verlag New York, Inc. Google ScholarGoogle ScholarDigital LibraryDigital Library
  56. E. Quigley, Y. Yu, J. Huang, W. Lin, and R. Fedkiw. 2018. Real-Time Interactive Tree Animation. TVCG 24, 5 (2018), 1717--1727.Google ScholarGoogle ScholarCross RefCross Ref
  57. T. Sachs. 2004. Self-organization of tree form: a model for complex social systems. Journal of Theoretical Biology 230, 2 (2004), 197 -- 202.Google ScholarGoogle ScholarCross RefCross Ref
  58. N. Salzmann, S. C. Scherrer, S. Allen, and M. Rohrer. 2015. Temperature, precipitation and related extremes in mountain areas. Cambridge University Press. 28--49 pages.Google ScholarGoogle Scholar
  59. K. Shinozaki, K. Yoda, K. Hozumi, and T. Kira. 1964. A quantitative analysis of plant form: the pipe model theory. II. Further evidence of the theory and its application in forest ecology. Jpn J Ecol 14 (08 1964), 133--139.Google ScholarGoogle Scholar
  60. O. Stava, S. Pirk, J. Kratt, B. Chen, R. Měch, O. Deussen, and B. Benes. 2014. Inverse Procedural Modelling of Trees. Comp. Graph. Forum 33, 6 (2014), 118--131. Google ScholarGoogle ScholarDigital LibraryDigital Library
  61. P. Tan, T. Fang, J. Xiao, P. Zhao, and L. Quan. 2008. Single Image Tree Modeling. ACM Trans. Graph. 27, 5, Article 108 (2008), 7 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  62. P. Tan, G. Zeng, J. Wang, S. B. Kang, and L. Quan. 2007. Image-based Tree Modeling. ACM Trans. Graph. 26, 3, Article 87 (2007). Google ScholarGoogle ScholarDigital LibraryDigital Library
  63. J. Vanclay. 1995. Growth models for tropical forests: A synthesis of models and methods. Forest Science -Washington- 41 (01 1995), 7--42.Google ScholarGoogle Scholar
  64. B. Wang, Y. Zhao, and J. Barbič. 2017. Botanical Materials Based on Biomechanics. ACM Trans. Graph. 36, 4, Article 135 (July 2017), 13 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  65. R. H. Waring and S. W. Running. 2007. Forest Ecosystem Analysis at Multiple Time and Space Scales. In Forest Ecosystems (Third Edition). Academic Press, 1 -- 16.Google ScholarGoogle Scholar
  66. R. H. Whittaker. 1977. Classification of natural communities. New York: Arno Press. Reprint of the 1962 ed. published in Plainfield, N.J., which was issued as v. 28, no. 1 of the Botanical review.Google ScholarGoogle ScholarCross RefCross Ref
  67. J. Wither, F. Boudon, M.-P. Cani, and C. Godin. 2009. Structure from silhouettes: a new paradigm for fast sketch-based design of trees. Computer Graphics Forum 28, 2 (2009), 541--550.Google ScholarGoogle ScholarCross RefCross Ref
  68. K. Xie, F. Yan, A. Sharf, D. Deussen, H. Huang, and B. Chen. 2016. Tree Modeling with Real Tree-Parts Examples. TVCG 22, 12 (2016), 2608--2618. Google ScholarGoogle ScholarDigital LibraryDigital Library
  69. S.-I. Yamamoto. 2000. Forest gap dynamics and tree regeneration. Journal of Forest Research 5, 4 (2000), 223--229.Google ScholarGoogle ScholarCross RefCross Ref
  70. B. Zeide. 1987. Analysis of the 3/2 Power Law of Self-Thinning. Forest Science 33 (06 1987), 517--537.Google ScholarGoogle Scholar
  71. F L Zhang, J J Wang, S H Liu, and S M Zhang. 2016. Development of economic and environmental metrics for forest-based biomass harvesting. IOP Conference Series: Earth and Environmental Science 40, 1 (2016), 012052.Google ScholarGoogle ScholarCross RefCross Ref
  72. X. Zhang, G. Bao, W. Meng, M. Jaeger, H. Li, O. Deussen, and B. Chen. 2017. Tree Branch Level of Detail Models for Forest Navigation. Comp. Graph. Forum 36, 8 (2017), 402--417.Google ScholarGoogle ScholarCross RefCross Ref
  73. Y. Zhao and J. Barbič. 2013. Interactive Authoring of Simulation-ready Plants. ACM Trans. Graph. 32, 4, Article 84 (2013), 12 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Synthetic silviculture: multi-scale modeling of plant ecosystems
            Index terms have been assigned to the content through auto-classification.

            Recommendations

            Comments

            Login options

            Check if you have access through your login credentials or your institution to get full access on this article.

            Sign in

            Full Access

            • Published in

              cover image ACM Transactions on Graphics
              ACM Transactions on Graphics  Volume 38, Issue 4
              August 2019
              1480 pages
              ISSN:0730-0301
              EISSN:1557-7368
              DOI:10.1145/3306346
              Issue’s Table of Contents

              Copyright © 2019 ACM

              Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

              Publisher

              Association for Computing Machinery

              New York, NY, United States

              Publication History

              • Published: 12 July 2019
              Published in tog Volume 38, Issue 4

              Permissions

              Request permissions about this article.

              Request Permissions

              Check for updates

              Qualifiers

              • research-article

            PDF Format

            View or Download as a PDF file.

            PDF

            eReader

            View online with eReader.

            eReader