skip to main content
research-article
Public Access

Photon surfaces for robust, unbiased volumetric density estimation

Published:12 July 2019Publication History
Skip Abstract Section

Abstract

We generalize photon planes to photon surfaces: a new family of unbiased volumetric density estimators which we combine using multiple importance sampling. To derive our new estimators, we start with the extended path integral which duplicates the vertex at the end of the camera and photon subpaths and couples them using a blurring kernel. To make our formulation unbiased, however, we use a delta kernel to couple these two end points. Unfortunately, sampling the resulting singular integral using Monte Carlo is impossible since the probability of generating a contributing light path by independently sampling the two subpaths is zero. Our key insight is that we can eliminate the delta kernel and make Monte Carlo estimation practical by integrating any three dimensions analytically, and integrating only the remaining dimensions using Monte Carlo. We demonstrate the practicality of this approach by instantiating a collection of estimators which analytically integrate the distance along the camera ray and two arbitrary sampling dimensions along the photon subpath (e.g., distance, direction, surface area). This generalizes photon planes to curved "photon surfaces", including new "photon cone", "photon cylinder", "photon sphere", and multiple new "photon plane" estimators. These estimators allow us to handle light paths not supported by photon planes, including single scattering, and surface-to-media transport. More importantly, since our estimators have complementary strengths due to analytically integrating different dimensions of the path integral, we can combine them using multiple importance sampling. This combination mitigates singularities present in individual estimators, substantially reducing variance while remaining fully unbiased. We demonstrate our improved estimators on a number of scenes containing homogeneous media with highly anisotropic phase functions, accelerating both multiple scattering and single scattering compared to prior techniques.

Skip Supplemental Material Section

Supplemental Material

papers_488.mp4

References

  1. James Richard Arvo. 1995a. Analytic methods for simulated light transport. Ph.D. Dissertation. Yale University.Google ScholarGoogle Scholar
  2. James Richard Arvo. 1995b. Applications of irradiance tensors to the simulation of non-Lambertian phenomena. In Annual Conference Series (Proceedings of SIGGRAPH). ACM, 335--342. https://doi.org/10/c2fss9 Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Rasmus Barringer, Carl Johan Gribel, and Tomas Akenine-Möller. 2012. High-quality curve rendering using line sampled visibility. ACM Transactions on Graphics (Proceedings of SIGGRAPH Asia) 31, 6 (Nov. 2012), 162:1--162:10. https://doi.org/10/f25qxk Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Laurent Belcour, Guofu Xie, Christophe Hery, Mark Meyer, Wojciech Jarosz, and Derek Nowrouzezahrai. 2018. Integrating clipped spherical harmonics expansions. ACM Transactions on Graphics 37, 2 (March 2018). https://doi.org/10/gd52pf Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Niels Billen and Philip Dutré. 2016. Line sampling for direct illumination. Computer Graphics Forum (Proceedings of the Eurographics Symposium on Rendering) 35, 4 (June 2016), 93--102. https://doi.org/10/f84z2hGoogle ScholarGoogle ScholarCross RefCross Ref
  6. Benedikt Bitterli. 2018. Tungsten Renderer. https://github.com/tunabrain/tungsten.Google ScholarGoogle Scholar
  7. Benedikt Bitterli and Wojciech Jarosz. 2017. Beyond points and beams: Higher-dimensional photon samples for volumetric light transport. ACM Transactions on Graphics (Proceedings of SIGGRAPH) 36, 4 (July 2017), 1--12. https://doi.org/10/gfznbr Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Eva Cerezo, Frederic Pérez, Xavier Pueyo, Francisco J. Seron, and François X. Sillion. 2005. A survey on participating media rendering techniques. The Visual Computer 21, 5 (2005), 303--328. https://doi.org/10/cjxqdt Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Subrahmanyan Chandrasekhar. 1960. Radiative transfer. Dover Publications, NY.Google ScholarGoogle Scholar
  10. Min Chen and James Richard Arvo. 2000. A closed-form solution for the irradiance due to linearly-varying luminaires. In Rendering Techniques (Proceedings of the Eurographics Workshop on Rendering). 137--148. https://doi.org/10/gfz9gv Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Min Chen and James Richard Arvo. 2001. Simulating non-Lambertian phenomena involving linearly-varying luminaires. In Rendering Techniques (Proceedings of the Eurographics Workshop on Rendering). 25--38. https://doi.org/10/chb4qg Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Per H. Christensen and Wojciech Jarosz. 2016. The path to path-traced movies. Foundations and Trends in Computer Graphics and Vision 10, 2 (Oct. 2016), 103--175. https://doi.org/10/gfjwjc Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Carsten Dachsbacher, Jaroslav Křivánek, Miloš Hašan, Adam Arbree, Bruce Walter, and Jan Novák. 2014. Scalable realistic rendering with many-light methods. Computer Graphics Forum 33, 1 (2014), 88--104. https://doi.org/10/f5twgd Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Luca Fascione, Johannes Hanika, Marcos Fajardo, Per Christensen, Brent Burley, Brian Green, Rob Pieké, Christopher Kulla, Christophe Hery, Ryusuke Villemin, Daniel Heckenberg, and André Mazzone. 2017. Path tracing in production (Parts 1 and 2). In ACM SIGGRAPH Courses. https://doi.org/10/gfz2ck Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Iliyan Georgiev, Jaroslav Křivànek, Tomas Davidovic, and Philipp Slusallek. 2012. Light transport simulation with vertex connection and merging. ACM Transactions on Graphics (Proceedings of SIGGRAPH Asia) 31, 5 (2012), 192:1--192:10. https://doi.org/10/gbb6q7 Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Iliyan Georgiev, Jaroslav Křivánek, Toshiya Hachisuka, Derek Nowrouzezahrai, and Wojciech Jarosz. 2013. Joint importance sampling of low-order volumetric scattering. ACM Transactions on Graphics (Proceedings of SIGGRAPH Asia) 32, 6 (Nov. 2013), 164:1--164:14. https://doi.org/10/gbd5qs Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Carl Johan Gribel, Rasmus Barringer, and Tomas Akenine-Möller. 2011. High-quality spatio-temporal rendering using semi-analytical visibility. ACM Transactions on Graphics (Proceedings of SIGGRAPH) 30, 4 (Aug. 2011), 54:1--54:11. https://doi.org/10/fgq7b9 Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Carl Johan Gribel, Michael Doggett, and Tomas Akenine-Möller. 2010. Analytical motion blur rasterization with compression. In Proceedings of High Performance Graphics. 163--172. https://doi.org/10/f2z5ds Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Adrien Gruson, Binh-Son Hua, Nicolas Vibert, Derek Nowrouzezahrai, and Toshiya Hachisuka. 2018. Gradient-domain volumetric photon density estimation. ACM Transactions on Graphics (Proceedings of SIGGRAPH) 37, 4 (July 2018), 82:1--82:13. https://doi.org/10/gd52p6 Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Toshiya Hachisuka, Iliyan Georgiev, Wojciech Jarosz, Jaroslav Křivánek, and Derek Nowrouzezahrai. 2017. Extended path integral formulation for volumetric transport. In Proceedings of the Eurographics Symposium on Rendering (Experimental Ideas & Implementations). https://doi.org/10/gfznb3 Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Toshiya Hachisuka, Shinji Ogaki, and Henrik Wann Jensen. 2008. Progressive photon mapping. ACM Transactions on Graphics (Proceedings of SIGGRAPH Asia) 27, 5 (2008), 130:1--130:8. https://doi.org/10/d8xxn3 Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Toshiya Hachisuka, Jacopo Pantaleoni, and Henrik Wann Jensen. 2012. A path space extension for robust light transport simulation. ACM Transactions on Graphics (Proceedings of SIGGRAPH Asia) 31, 5 (2012),191:1--191:10. https://doi.org/10/gbb6n3 Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Vlastimil Havran, Jiri Bittner, Robert Herzog, and Hans-Peter Seidel. 2005. Ray maps for global illumination. In Rendering Techniques (Proceedings of the Eurographics Symposium on Rendering). 43--54. https://doi.org/10/c2xphk Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Eric Heitz, Stephen Hill, and Morgan McGuire. 2018. Combining analytic direct illumination and stochastic shadows. In Proceedings of the Symposium on Interactive 3D Graphics and Games (i3D). ACM, 2:1--2:11. https://doi.org/10/gfznb7 Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. David Immel, Michael Cohen, and Donald Greenberg. 1986. A radiosity method for non-diffuse environments. Computer Graphics (Proceedings of SIGGRAPH) 20, 4 (1986), 133--142. https://doi.org/10/dmjm9t Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Wenzel Jakob. 2013. Light transport on path-space manifolds. Ph.D. Dissertation. Cornell University.Google ScholarGoogle Scholar
  27. Wojciech Jarosz, Derek Nowrouzezahrai, Iman Sadeghi, and Henrik Wann Jensen. 2011a. A comprehensive theory of volumetric radiance estimation using photon points and beams. ACM Transactions on Graphics 30, 1 (Feb. 2011), 5:1--5:19. https://doi.org/10/fcdh2f Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Wojciech Jarosz, Derek Nowrouzezahrai, Robert Thomas, Peter-Pike Sloan, and Matthias Zwicker. 2011b. Progressive photon beams. ACM Transactions on Graphics (Proceedings of SIGGRAPH Asia) 30, 6 (Dec. 2011). https://doi.org/10/fn5xzj Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Wojciech Jarosz, Matthias Zwicker, and Henrik Wann Jensen. 2008. The beam radiance estimate for volumetric photon mapping. Computer Graphics Forum (Proceedings of Eurographics) 27, 2 (April 2008), 557--566. https://doi.org/10/bjsfsxGoogle ScholarGoogle ScholarCross RefCross Ref
  30. Johannes Jendersie. 2018. Path throughput importance weights. arXiv:1806.01005Google ScholarGoogle Scholar
  31. Henrik Wann Jensen. 1996. Global illumination using photon maps. In Rendering Techniques (Proceedings of the Eurographics Workshop on Rendering). 21--30. https://doi.org/10/fzc6t9 Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Henrik Wann Jensen and Per H. Christensen. 1998. Efficient simulation of light transport in scenes with participating media using photon maps. In Annual Conference Series (Proceedings of SIGGRAPH). 311--320. https://doi.org/10/b64p36 Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Thouis R. Jones and Ronald N. Perry. 2000. Antialiasing with line samples. In Rendering Techniques (Proceedings of the Eurographics Workshop on Rendering). 197--206. https://doi.org/10/gfznb9 Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. James T. Kajiya. 1986. The Rendering Equation. Computer Graphics (Proceedings of SIGGRAPH) 20, 4 (Aug. 1986), 143--150. https://doi.org/10/cvf53j Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Csaba Kelemen, László Szirmay-Kalos, György Antal, and Ferenc Csonka. 2002. A simple and robust mutation strategy for the Metropolis light transport algorithm. Computer Graphics Forum 21, 3 (2002), 531--540. https://doi.org/10/bfrsqnGoogle ScholarGoogle ScholarCross RefCross Ref
  36. Markus Kettunen, Marco Manzi, Miika Aittala, Jaakko Lehtinen, Frédo Durand, and Matthias Zwicker. 2015. Gradient-domain path tracing. ACM Transactions on Graphics (Proceedings of SIGGRAPH) 34, 4 (July 2015), 123:1--123:13. https://doi.org/10/gfzrhn Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Jaroslav Křivánek, Iliyan Georgiev, Toshiya Hachisuka, Petr Vévoda, Martin Šik, Derek Nowrouzezahrai, and Wojciech Jarosz. 2014. Unifying points, beams, and paths in volumetric light transport simulation. ACM Transactions on Graphics (Proceedings of SIGGRAPH) 33, 4 (July 2014), 103:1--103:13. https://doi.org/10/f6cz72 Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Eric Lafortune and Yves Willems. 1993. Bi-directional path tracing. In Proceedings of Compugraphics, Vol. 93. 145--153.Google ScholarGoogle Scholar
  39. Jaakko Lehtinen, Tero Karras, Samuli Laine, Miika Aittala, Frédo Durand, and Timo Aila. 2013. Gradient-domain Metropolis light transport. ACM Transactions on Graphics (Proceedings of SIGGRAPH) 32, 4 (July 2013), 95:1--95:12. https://doi.org/10/gbdghd Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Jan Novák, Iliyan Georgiev, Johannes Hanika, and Wojciech Jarosz. 2018a. Monte Carlo methods for volumetric light transport simulation. Computer Graphics Forum (Eurographics State of the Art Reports) 37, 2 (May 2018), 551--576. https://doi.org/10/gd2jqqGoogle ScholarGoogle ScholarCross RefCross Ref
  41. Jan Novák, Iliyan Georgiev, Johannes Hanika, Jaroslav Křivánek, and Wojciech Jarosz. 2018b. Monte Carlo methods for physically based volume rendering. In ACM SIGGRAPH Courses. https://doi.org/10/c5fj Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. Jan Novák, Derek Nowrouzezahrai, Carsten Dachsbacher, and Wojciech Jarosz. 2012a. Progressive virtual beam lights. Computer Graphics Forum (Proceedings of the Eurographics Symposium on Rendering) 31, 4 (June 2012), 1407--1413. https://doi.org/10/gfzndw Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. Jan Novák, Derek Nowrouzezahrai, Carsten Dachsbacher, and Wojciech Jarosz. 2012b. Virtual ray lights for rendering scenes with participating media. ACM Transactions on Graphics (Proceedings of SIGGRAPH) 31, 4 (July 2012), 60:1--60:11. https://doi.org/10/gbbwk2 Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. Derek Nowrouzezahrai, Ilya Baran, Kenny Mitchell, and Wojciech Jarosz. 2014. Visibility silhouettes for semi-analytic spherical integration. Computer Graphics Forum 33, 1 (Feb. 2014), 105--117. https://doi.org/10/f5t6tf Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. Mark Pauly, Thomas Kollig, and Alexander Keller. 2000. Metropolis light transport for participating media. In Rendering Techniques (Proceedings of the Eurographics Workshop on Rendering). 11--22. https://doi.org/10/gfzm93 Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. Vincent Pegoraro and Steven G. Parker. 2009. An analytical solution to single scattering in homogeneous participating media. Computer Graphics Forum (Proceedings of Eurographics) 28, 2 (2009), 329--335. https://doi.org/10/c9zhxnGoogle ScholarGoogle ScholarCross RefCross Ref
  47. Matt Pharr, Wenzel Jakob, and Greg Humphreys. 2016. Physically based rendering: From theory to implementation (3rd ed.). Google ScholarGoogle ScholarDigital LibraryDigital Library
  48. Gurprit Singh and Wojciech Jarosz. 2017. Convergence analysis for anisotropic Monte Carlo sampling spectra. ACM Transactions on Graphics (Proceedings of SIGGRAPH) 36, 4 (July 2017), 137:1--137:14. https://doi.org/10/gbxfhj Google ScholarGoogle ScholarDigital LibraryDigital Library
  49. Gurprit Singh, Bailey Miller, and Wojciech Jarosz. 2017. Variance and convergence analysis of Monte Carlo line and segment sampling. Computer Graphics Forum (Proceedings of the Eurographics Symposium on Rendering) 36, 4 (June 2017), 79--89. https://doi.org/10/gfzncj Google ScholarGoogle ScholarDigital LibraryDigital Library
  50. Jerome Spanier. 1966. Two pairs of families of estimators for transport problems. SIAM J. Appl. Math. 14, 4 (1966), 702--713. https://doi.org/10/dg35ntGoogle ScholarGoogle ScholarDigital LibraryDigital Library
  51. Bo Sun, Ravi Ramamoorthi, Srinivasa G. Narasimhan, and Shree K. Nayar. 2005. A practical analytic single scattering model for real time rendering. ACM Transactions on Graphics (Proceedings of SIGGRAPH) 24, 3 (2005), 1040--1049. https://doi.org/10/fgnbqt Google ScholarGoogle ScholarDigital LibraryDigital Library
  52. Xin Sun, Kun Zhou, Jie Guo, Guofu Xie, Jingui Pan, Wencheng Wang, and Baining Guo. 2013. Line segment sampling with blue-noise properties. ACM Transactions on Graphics (Proceedings of SIGGRAPH) 32, 4 (July 2013), 127:1--127:14. https://doi.org/10/gbdg4r Google ScholarGoogle ScholarDigital LibraryDigital Library
  53. Xin Sun, Kun Zhou, Stephen Lin, and Baining Guo. 2010. Line space gathering for single scattering in large scenes. ACM Transactions on Graphics (Proceedings of SIGGRAPH) 29, 4 (July 2010), 54:1--54:8. https://doi.org/10/dzxvvr Google ScholarGoogle ScholarDigital LibraryDigital Library
  54. Stanley Tzeng, Anjul Patney, Andrew Davidson, Mohamed S. Ebeida, Scott A. Mitchell, and John D. Owens. 2012. High-quality parallel depth-of-field using line samples. In Proceedings of High Performance Graphics. 23--31. https://doi.org/10/gfzncq Google ScholarGoogle ScholarDigital LibraryDigital Library
  55. Eric Veach. 1997. Robust Monte Carlo methods for light transport simulation. Ph.D. Dissertation. Stanford, CA, USA. Google ScholarGoogle ScholarDigital LibraryDigital Library
  56. Eric Veach and Leonidas Guibas. 1994. Bidirectional estimators for light transport. In Photorealistic Rendering Techniques (Proceedings of the Eurographics Workshop on Rendering. 147--162. https://doi.org/10/gfznbhGoogle ScholarGoogle Scholar
  57. Eric Veach and Leonidas Guibas. 1995. Optimally combining sampling techniques for Monte Carlo rendering. Annual Conference Series (Proceedings of SIGGRAPH) 29 (1995), 419--428. https://doi.org/10/d7b6n4 Google ScholarGoogle ScholarDigital LibraryDigital Library
  58. Eric Veach and Leonidas Guibas. 1997. Metropolis light transport. Annual Conference Series (Proceedings of SIGGRAPH) 31 (1997), 65--76. https://doi.org/10/bkjqj4 Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Photon surfaces for robust, unbiased volumetric density estimation

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in

    Full Access

    • Published in

      cover image ACM Transactions on Graphics
      ACM Transactions on Graphics  Volume 38, Issue 4
      August 2019
      1480 pages
      ISSN:0730-0301
      EISSN:1557-7368
      DOI:10.1145/3306346
      Issue’s Table of Contents

      Copyright © 2019 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 12 July 2019
      Published in tog Volume 38, Issue 4

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader