skip to main content
research-article

Weaving geodesic foliations

Published:12 July 2019Publication History
Skip Abstract Section

Abstract

We study discrete geodesic foliations of surfaces---foliations whose leaves are all approximately geodesic curves---and develop several new variational algorithms for computing such foliations. Our key insight is a relaxation of vector field integrability in the discrete setting, which allows us to optimize for curl-free unit vector fields that remain well-defined near singularities and robustly recover a scalar function whose gradient is well aligned to these fields. We then connect the physics governing surfaces woven out of thin ribbons to the geometry of geodesic foliations, and present a design and fabrication pipeline for approximating surfaces of arbitrary geometry and topology by triaxially-woven structures, where the ribbon layout is determined by a geodesic foliation on a sixfold branched cover of the input surface. We validate the effectiveness of our pipeline on a variety of simulated and fabricated woven designs, including an example for readers to try at home.

Skip Supplemental Material Section

Supplemental Material

papers_519.mp4

References

  1. Hillel Aharoni, Desislava V. Todorova, Octavio Albarrán, Lucas Goehring, Randall D. Kamien, and Eleni Katifori. 2017. The smectic order of wrinkles. In Nature communications.Google ScholarGoogle Scholar
  2. Ergun Akleman, Jianer Chen, YenLin Chen, Qing Xing, and Jonathan L. Gross. 2011. Cyclic twill-woven objects. Computers & Graphics 35, 3 (2011), 623 -- 631. Shape Modeling International (SMI) Conference 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Ergun Akleman, Jianer Chen, Qing Xing, and Jonathan L. Gross. 2009. Cyclic Plain-weaving on Polygonal Mesh Surfaces with Graph Rotation Systems. In ACM SIGGRAPH 2009 Papers (SIGGRAPH '09). ACM, New York, NY, USA, Article 78, 8 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Marc Alexa and Max Wardetzky. 2011. Discrete Laplacians on General Polygonal Meshes. ACM Trans. Graph. 30, 4, Article 102 (July 2011), 10 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Patricio Aviles and Yoshikazu Giga. 1987. A mathematical problem related to the physical theory of liquid crystal configurations. In Miniconference on geometry/partial differential equations, 2. Centre for Mathematical Analysis, The Australian National University, Canberra AUS, 1--16. https://projecteuclid.org/euclid.pcma/1416336633Google ScholarGoogle Scholar
  6. Phil Ayres, Alison Grace Martin, and Mateusz Zwierzycki. 2018. Beyond the basket case: A principled approach to the modelling of kagome weave patterns for the fabrication of interlaced lattice structures using straight strips. In Advances in Architectural Geometry.Google ScholarGoogle Scholar
  7. Omri Azencot, Maks Ovsjanikov, Frédéric Chazal, and Mirela Ben-Chen. 2015. Discrete Derivatives of Vector Fields on Surfaces - An Operator Approach. ACM Trans. Graph. 34, 3, Article 29 (May 2015), 13 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Mirela Ben-Chen, Adrian Butscher, Justin Solomon, and Leonidas Guibas. 2010. On Discrete Killing Vector Fields and Patterns on Surfaces. Computer Graphics Forum 29, 5 (2010), 1701--1711.Google ScholarGoogle ScholarCross RefCross Ref
  9. Miklós Bergou, Basile Audoly, Etienne Vouga, Max Wardetzky, and Eitan Grinspun. 2010. Discrete Viscous Threads. ACM Trans. Graph. 29, 4, Article 116 (July 2010), 10 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Miklós Bergou, Max Wardetzky, Stephen Robinson, Basile Audoly, and Eitan Grinspun. 2008. Discrete Elastic Rods. ACM Trans. Graph. 27, 3, Article 63 (Aug. 2008), 12 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Florence Bertails, Basile Audoly, Marie-Paule Cani, Bernard Querleux, Frédéric Leroy, and Jean-Luc Lévêque. 2006. Super-helices for Predicting the Dynamics of Natural Hair. In ACM SIGGRAPH 2006 Papers (SIGGRAPH '06). ACM, New York, NY, USA, 1180--1187. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. H. Bhatia, S. Jadhav, P. Bremer, G. Chen, J. A. Levine, L. G. Nonato, and V. Pascucci. 2011. Edge maps: Representing flow with bounded error. In 2011 IEEE Pacific Visualization Symposium. IEEE, Hong Kong, China, 75--82. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. E Boeckx and L Vanhecke. 2000. Harmonic and minimal vector fields on tangent and unit tangent bundles. Differential Geometry and its Applications 13 (07 2000), 77--93.Google ScholarGoogle Scholar
  14. David Bommes, Bruno Lévy, Nico Pietroni, Enrico Puppo, Claudio Silva, Marco Tarini, and Denis Zorin. 2013. Quad-Mesh Generation and Processing: A Survey. Comput. Graph. Forum 32, 6 (Sept. 2013), 51--76. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. David Bommes, Henrik Zimmer, and Leif Kobbelt. 2009. Mixed-integer Quadrangulation. ACM Trans. Graph. 28, 3, Article 77 (July 2009), 10 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. David Bommes, Henrik Zimmer, and Leif Kobbelt. 2012. Practical Mixed-integer Optimization for Geometry Processing. In Proceedings of the 7th International Conference on Curves and Surfaces. Springer-Verlag, Berlin, Heidelberg, 193--206. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Boston Scientific. 2015. Innova: Self-expanding nitinol stent system for Superficial Femoral Arterty. http://www.bostonscientific.com/en-EU/products/stents-vascular/innova-self-expanding-stent-system.html. Accessed: 2018-05-27.Google ScholarGoogle Scholar
  18. J. B. Boyling. 1968. Carathéodory's principle and the existence of global integrating factors. Communications in Mathematical Physics 10, 1 (01 Feb 1968), 52--68.Google ScholarGoogle Scholar
  19. P.-T. Brun, Basile Audoly, Neil M. Ribe, T. S. Eaves, and John R. Lister. 2015. Liquid Ropes: A Geometrical Model for Thin Viscous Jet Instabilities. Phys. Rev. Lett. 114 (Apr 2015), 174501. Issue 17.Google ScholarGoogle ScholarCross RefCross Ref
  20. Marcel Campen, David Bommes, and Leif Kobbelt. 2012. Dual Loops Meshing: Quality Quad Layouts on Manifolds. ACM Trans. Graph. 31, 4, Article 110 (July 2012), 11 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Marcel Campen, Moritz Ibing, Hans-Christian Ebke, Denis Zorin, and Leif Kobbelt. 2016. Scale-Invariant Directional Alignment of Surface Parametrizations. Computer Graphics Forum 35, 5 (2016), 1--10.Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Marcel Campen and Leif Kobbelt. 2014a. Dual Strip Weaving: Interactive Design of Quad Layouts Using Elastica Strips. ACM Trans. Graph. 33, 6, Article 183 (Nov. 2014), 10 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. M. Campen and L. Kobbelt. 2014b. Quad Layout Embedding via Aligned Parameterization. Comput. Graph. Forum 33, 8 (Dec. 2014), 69--81. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Paolo Cignoni, Nico Pietroni, Luigi Malomo, and Roberto Scopigno. 2014. Field-aligned Mesh Joinery. ACM Trans. Graph. 33, 1, Article 11 (Feb. 2014), 12 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Gabriel Cirio, Jorge Lopez-Moreno, David Miraut, and Miguel A. Otaduy. 2014. Yarn-level Simulation of Woven Cloth. ACM Trans. Graph. 33, 6, Article 207 (Nov. 2014), 11 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Keenan Crane, Mathieu Desbrun, and Peter Schröder. 2010. Trivial Connections on Discrete Surfaces. Computer Graphics Forum 29, 5 (2010), 1525--1533.Google ScholarGoogle ScholarCross RefCross Ref
  27. Keenan Crane, Clarisse Weischedel, and Max Wardetzky. 2013. Geodesics in Heat: A New Approach to Computing Distance Based on Heat Flow. ACM Trans. Graph. 32, 5, Article 152 (Oct. 2013), 11 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Fernando de Goes, Mathieu Desbrun, and Yiying Tong. 2016. Vector Field Processing on Triangle Meshes. In ACM SIGGRAPH 2016 Courses (SIGGRAPH '16). ACM, New York, NY, USA, Article 27, 49 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Olga Diamanti, Amir Vaxman, Daniele Panozzo, and Olga Sorkine-Hornung. 2014. Designing N-PolyVector Fields with Complex Polynomials. Comput. Graph. Forum 33, 5 (Aug. 2014), 1--11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Olga Diamanti, Amir Vaxman, Daniele Panozzo, and Olga Sorkine-Hornung. 2015. Integrable PolyVector Fields. ACM Trans. Graph. 34, 4, Article 38 (July 2015), 12 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. N. M. Ercolani and S. C. Venkataramani. 2009. A Variational Theory for Point Defects in Patterns. Journal of Nonlinear Science 19, 3 (01 Jun 2009), 267--300.Google ScholarGoogle ScholarCross RefCross Ref
  32. Nahum Farchi and Mirela Ben-Chen. 2018. Integer-only Cross Field Computation. ACM Trans. Graph. 37, 4, Article 91 (July 2018), 13 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Matthew Fisher, Peter Schröder, Mathieu Desbrun, and Hugues Hoppe. 2007. Design of Tangent Vector Fields. ACM Trans. Graph. 26, 3 (July 2007), 1--9. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Marc Fornes. 2017. Minima | Maxima. World Expo 2017.Google ScholarGoogle Scholar
  35. Akash Garg, Andrew O. Sageman-Furnas, Bailin Deng, Yonghao Yue, Eitan Grinspun, Mark Pauly, and Max Wardetzky. 2014. Wire Mesh Design. ACM Trans. Graph. 33, 4, Article 66 (July 2014), 12 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Michel X. Goemans and David P. Williamson. 1995. Improved Approximation Algorithms for Maximum Cut and Satisfiability Problems Using Semidefinite Programming. J. ACM 42, 6 (Nov. 1995), 1115--1145. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Aaron Hertzmann and Denis Zorin. 2000. Illustrating Smooth Surfaces. In Proceedings of the 27th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH '00). ACM Press/Addison-Wesley Publishing Co., New York, NY, USA, 517--526. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. W. S. Howard and V. Kumar. 1993. A minimum principle for the dynamic analysis of systems with frictional contacts. In {1993} Proceedings IEEE International Conference on Robotics and Automation. IEEE, Atlanta, GA, 437--442 vol.3.Google ScholarGoogle Scholar
  39. Yuki Igarashi, Takeo Igarashi, and Hiromasa Suzuki 2008 Knitting a 3D Model. Comput. Graph. Forum 27 (10 2008), 1737--1743.Google ScholarGoogle Scholar
  40. Pierre-Emmanuel Jabin, Felix Otto, and Benoî t Perthame. 2002. Line-energy Ginzburg-Landau models : zero-energy states. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze Ser. 5, 1, 1 (2002), 187--202.Google ScholarGoogle Scholar
  41. Wenzel Jakob, Marco Tarini, Daniele Panozzo, and Olga Sorkine-Hornung. 2015. Instant Field-aligned Meshes. ACM Trans. Graph. 34, 6, Article 189 (Oct. 2015), 15 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. Felix Kälberer, Matthias Nieser, and Konrad Polthier. 2007. QuadCover - Surface Parameterization using Branched Coverings. Comput. Graph. Forum 26 (09 2007), 375--384.Google ScholarGoogle Scholar
  43. Jonathan M. Kaldor, Doug L. James, and Steve Marschner. 2008. Simulating Knitted Cloth at the Yarn Level. In ACM SIGGRAPH 2008 Papers (SIGGRAPH '08). ACM, New York, NY, USA, Article 65, 9 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. W. Klingenberg. 1978. Lectures on Closed Geodesies. Springer-Verlag. https://books.google.com/books?id=t1nvAAAAMAAJGoogle ScholarGoogle Scholar
  45. Felix Knöppel, Keenan Crane, Ulrich Pinkall, and Peter Schröder. 2013. Globally Optimal Direction Fields. ACM Trans. Graph. 32, 4, Article 59 (July 2013), 10 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. Felix Knöppel, Keenan Crane, Ulrich Pinkall, and Peter Schröder. 2015. Stripe Patterns on Surfaces. ACM Trans. Graph. 34 (2015), 1--11. Issue 4. Google ScholarGoogle ScholarDigital LibraryDigital Library
  47. Robert Kohn. 2006. Energy-driven pattern formation. In International Congress of Mathematicians, ICM 2006, Vol. 1. 359--383.Google ScholarGoogle Scholar
  48. Jonathan Leaf, Rundong Wu, Eston Schweickart, Doug L. James, and Steve Marschner. 2018. Interactive Design of Periodic Yarn-level Cloth Patterns. ACM Trans. Graph. 37, 6, Article 202 (Dec. 2018), 202:1--202:15 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  49. Urszula Lewandowska, Wojciech Zajaczkowski, Stefano Corra, Junki Tanabe, Ruediger Borrmann, Edmondo M. Benetti, Sebastian Stappert, Kohei Watanabe, Nellie A. K. Ochs, Robin Schaeublin, Chen Li, Eiji Yashima, Wojciech Pisula, Klaus Müllen, and Helma Wennemers. 2017. A triaxial supramolecular weave. Nature Chemistry 9 (24 Jul 2017), 1068 EP -. Article.Google ScholarGoogle Scholar
  50. Binbin Lin, Xiaofei He, Chiyuan Zhang, and Ming Ji. 2013. Parallel Vector Field Embedding. Journal of Machine Learning Research 14 (2013), 2945--2977. Google ScholarGoogle ScholarDigital LibraryDigital Library
  51. Beibei Liu, Yiying Tong, Fernando De Goes, and Mathieu Desbrun. 2016. Discrete Connection and Covariant Derivative for Vector Field Analysis and Design. ACM Trans. Graph. 35, 3, Article 23 (March 2016), 17 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  52. Thomas Machon, Hillel Aharoni, Yichen Hu, and Randall D. Kamien. 2019. Aspects of Defect Topology in Smectic Liquid Crystals. Communications in Mathematical Physics (20 Feb 2019).Google ScholarGoogle Scholar
  53. Alison Martin. 2018. Alison Grace Martin. http://gallery.bridgesmathart.org/exhibitions/2013-bridges-conference/alison-martin. Accessed: 2018-01-23.Google ScholarGoogle Scholar
  54. James McCann, Lea Albaugh, Vidya Narayanan, April Grow, Wojciech Matusik, Jennifer Mankoff, and Jessica Hodgins. 2016. A Compiler for 3D Machine Knitting. ACM Trans. Graph. 35, 4, Article 49 (July 2016), 11 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  55. Eder Miguel, Mathias Lepoutre, and Bernd Bickel. 2016. Computational Design of Stable Planar-rod Structures. ACM Trans. Graph. 35, 4, Article 86 (July 2016), 11 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  56. Joseph S. B. Mitchell, David M. Mount, and Christos H. Papadimitriou. 1987. The Discrete Geodesic Problem. SIAM J. Comput. 16, 4 (Aug. 1987), 647--668. Google ScholarGoogle ScholarDigital LibraryDigital Library
  57. Vidya Narayanan, Lea Albaugh, Jessica Hodgins, Stelian Coros, and James Mccann. 2018. Automatic Machine Knitting of 3D Meshes. ACM Trans. Graph. 37, 3, Article 35 (Aug. 2018), 15 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  58. M. Nieser, J. Palacios, K. Polthier, and E. Zhang. 2012. Hexagonal Global Parameterization of Arbitrary Surfaces. IEEE Transactions on Visualization and Computer Graphics 18, 6 (June 2012), 865--878. Google ScholarGoogle ScholarDigital LibraryDigital Library
  59. Jonathan Palacios and Eugene Zhang. 2007. Rotational Symmetry Field Design on Surfaces. ACM Trans. Graph. 26, 3, Article 55 (July 2007), 10 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  60. Daniele Panozzo, Enrico Puppo, Marco Tarini, and Olga Sorkine-Hornung. 2014. Frame Fields: Anisotropic and Non-orthogonal Cross Fields. ACM Trans. Graph. 33, 4, Article 134 (July 2014), 11 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  61. Jesús Pérez, Bernhard Thomaszewski, Stelian Coros, Bernd Bickel, José A. Canabal, Robert Sumner, and Miguel A. Otaduy. 2015. Design and Fabrication of Flexible Rod Meshes. ACM Trans. Graph. 34, 4, Article 138 (July 2015), 12 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  62. Henri Poincare. 1905. Sur Les Lignes Geodesiques Des Surfaces Convexes. Trans. Amer. Math. Soc. 6, 3 (1905), 237--274. http://www.jstor.org/stable/1986219Google ScholarGoogle ScholarCross RefCross Ref
  63. S. Poljak and Z. Tuza. 1994. The Max-cut Problem: A Survey. Institute of Mathematics, Academia Sinica, Taipei, Taiwan, China. https://books.google.com/books?id=-AaZMwEACAAJGoogle ScholarGoogle Scholar
  64. Konrad Polthier and Eike Preuß. 2003. Identifying Vector Field Singularities Using a Discrete Hodge Decomposition. In Visualization and Mathematics III, Hans-Christian Hege and Konrad Polthier (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 113--134.Google ScholarGoogle Scholar
  65. Konrad Polthier and Markus Schmies. 2006. Straightest Geodesics on Polyhedral Surfaces. In ACM SIGGRAPH 2006 Courses (SIGGRAPH '06). ACM, New York, NY, USA, 30--38. Google ScholarGoogle ScholarDigital LibraryDigital Library
  66. Mariana Popescu, Matthias Rippmann, Tom Van Mele, and Philippe Block. 2018. Automated Generation of Knit Patterns for Non-developable Surfaces. Springer Singapore, Singapore, 271--284.Google ScholarGoogle Scholar
  67. Helmut Pottmann, Qixing Huang, Bailin Deng, Alexander Schiftner, Martin Kilian, Leonidas Guibas, and Johannes Wallner. 2010. Geodesic Patterns. ACM Trans. Graph. 29, 4, Article 43 (July 2010), 10 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  68. Martin Puryear. 1998. Brunhilde. Cedar and rattan.Google ScholarGoogle Scholar
  69. Qmechanic. 2018. Is every vector field locally integrable up to a rescaling? Mathematics Stack Exchange. URL:https://math.stackexchange.com/q/2716593 (version: 2018-04-10).Google ScholarGoogle Scholar
  70. Nicolas Ray, Wan Chiu Li, Bruno Lévy, Alla Sheffer, and Pierre Alliez. 2006. Periodic Global Parameterization. ACM Trans. Graph. 25, 4 (Oct. 2006), 1460--1485. Google ScholarGoogle ScholarDigital LibraryDigital Library
  71. Nicolas Ray and Dmitry Sokolov. 2014. Robust Polylines Tracing for N-Symmetry Direction Field on Triangulated Surfaces. ACM Trans. Graph. 33, 3, Article 30 (June 2014), 11 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  72. Nicolas Ray, Bruno Vallet, Laurent Alonso, and Bruno Levy. 2009. Geometry-aware Direction Field Processing. ACM Trans. Graph. 29, 1, Article 1 (Dec. 2009), 11 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  73. Tristan Rivière and Sylvia Serfaty. 2001. Limiting domain wall energy for a problem related to micromagnetics. Communications on Pure and Applied Mathematics 54, 3 (2001), 294--338. <294::AID-CPA2>3.0.CO;2-SarXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/1097-0312%28200103%2954%3A3%3C294%3A%3AAID-CPA2%3E3.0.CO%3B2-SGoogle ScholarGoogle ScholarCross RefCross Ref
  74. Lawrence Roy, Prashant Kumar, Sanaz Golbabaei, Yue Zhang, and Eugene Zhang. 2018. Interactive Design and Visualization of Branched Covering Spaces. IEEE Trans. Vis. Comput. Graph. 24, 1 (2018), 843--852.Google ScholarGoogle ScholarCross RefCross Ref
  75. Zhongwei Shen, Jin Huang, Wei Chen, and Hujun Bao. 2015. Geometrically Exact Simulation of Inextensible Ribbon. Comput. Graph. Forum 34, 7 (Oct. 2015), 145--154. Google ScholarGoogle ScholarDigital LibraryDigital Library
  76. Mélina Skouras, Stelian Coros, Eitan Grinspun, and Bernhard Thomaszewski. 2015. Interactive Surface Design with Interlocking Elements. ACM Trans. Graph. 34, 6, Article 224 (Oct. 2015), 224:1--224:7 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  77. Peng Song, Chi-Wing Fu, Prashant Goswami, Jianmin Zheng, Niloy J. Mitra, and Daniel Cohen-Or. 2013. Reciprocal Frame Structures Made Easy. ACM Trans. Graph. 32, 4, Article 94 (July 2013), 13 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  78. Vitaly Surazhsky, Tatiana Surazhsky, Danil Kirsanov, Steven J. Gortler, and Hugues Hoppe. 2005. Fast Exact and Approximate Geodesics on Meshes. ACM Trans. Graph. 24, 3 (July 2005), 553--560. Google ScholarGoogle ScholarDigital LibraryDigital Library
  79. Masahito Takezawa, Takuma Imai, Kentaro Shida, and Takashi Maekawa. 2016. Fabrication of Freeform Objects by Principal Strips. ACM Trans. Graph. 35, 6, Article 225 (Nov. 2016), 12 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  80. Ye Tao, Nannan Lu, Caowei Zhang, Guanyun Wang, Cheng Yao, and Fangtian Ying. 2016. CompuWoven: A Computer-Aided Fabrication Approach to Hand-Woven Craft. In Proceedings of the 2016 CHI Conference Extended Abstracts on Human Factors in Computing Systems (CHIEA '16). ACM, New York, NY, USA, 2328--2333. Google ScholarGoogle ScholarDigital LibraryDigital Library
  81. Ye Tao, Guanyun Wang, Caowei Zhang, Nannan Lu, Xiaolian Zhang, Cheng Yao, and Fangtian Ying. 2017. WeaveMesh: A Low-Fidelity and Low-Cost Prototyping Approach for 3D Models Created by Flexible Assembly. In Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems (CHI '17). ACM, New York, NY, USA, 509--518. Google ScholarGoogle ScholarDigital LibraryDigital Library
  82. Hugues Vandeparre, Miguel Piñeirua, Fabian Brau, Benoit Roman, José Bico, Cyprien Gay, Wenzhong Bao, Chun Ning Lau, Pedro M. Reis, and Pascal Damman. 2011. Wrinkling Hierarchy in Constrained Thin Sheets from Suspended Graphene to Curtains. Phys. Rev. Lett. 106 (Jun 2011), 224301. Issue 22.Google ScholarGoogle ScholarCross RefCross Ref
  83. Amir Vaxman, Marcel Campen, Olga Diamanti, Daniele Panozzo, David Bommes, Klaus Hildebrandt, and Mirela Ben-Chen. 2016. Directional Field Synthesis, Design, and Processing. In Proceedings of the 37th Annual Conference of the European Association for Computer Graphics: State of the Art Reports (EG '16). Eurographics Association, Goslar Germany, Germany, 545--572. Google ScholarGoogle ScholarDigital LibraryDigital Library
  84. R. Viertel and B. Osting. 2019. An Approach to Quad Meshing Based on Harmonic Cross-Valued Maps and the Ginzburg-Landau Theory. SIAM Journal on Scientific Computing 41, 1 (2019), A452--A479.Google ScholarGoogle ScholarDigital LibraryDigital Library
  85. Kui Wu, Xifeng Gao, Zachary Ferguson, Daniele Panozzo, and Cem Yuksel. 2018. Stitch Meshing. ACM Trans. Graph. 37, 4 (2018). Google ScholarGoogle ScholarDigital LibraryDigital Library
  86. Qing Xing, Gabriel Esquivel, Ergun Akleman, Jianer Chen, and Jonathan Gross. 2011. Band Decomposition of 2-manifold Meshes for Physical Construction of Large Structures. In ACM SIGGRAPH 2011 Posters (SIGGRAPH '11). ACM, New York, NY, USA, Article 58, 1 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  87. Alexander Yampolsky. 2005. On extrinsic geometry of unit normal vector fields of Riemannian hyperfoliations. (2005). arXiv:arXiv:math/0503566Google ScholarGoogle Scholar
  88. Cem Yuksel, Jonathan M. Kaldor, Doug L. James, and Steve Marschner. 2012. Stitch Meshes for Modeling Knitted Clothing with Yarn-level Detail. ACM Trans. Graph. 31, 4, Article 37 (July 2012), 12 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  89. Jonas Zehnder, Stelian Coros, and Bernhard Thomaszewski. 2016. Designing Structurally-sound Ornamental Curve Networks. ACM Trans. Graph. 35, 4, Article 99 (July 2016), 10 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  90. Eugene Zhang, Konstantin Mischaikow, and Greg Turk. 2006. Vector Field Design on Surfaces. ACM Trans. Graph. 25, 4 (Oct. 2006), 1294--1326. Google ScholarGoogle ScholarDigital LibraryDigital Library
  91. Mateusz Zwierzycki, Petras Vestartas, Mary Katherine Heinrich, and Phil Ayres. 2017. High Resolution Representation and Simulation of Braiding Patterns. In Acadia 2017: Disciplines and Disruption, Vol. MA 2--4. Acadia Publishing Company, Boston, MA, 670--679.Google ScholarGoogle Scholar

Index Terms

  1. Weaving geodesic foliations

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in

        Full Access

        • Published in

          cover image ACM Transactions on Graphics
          ACM Transactions on Graphics  Volume 38, Issue 4
          August 2019
          1480 pages
          ISSN:0730-0301
          EISSN:1557-7368
          DOI:10.1145/3306346
          Issue’s Table of Contents

          Copyright © 2019 ACM

          Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 12 July 2019
          Published in tog Volume 38, Issue 4

          Permissions

          Request permissions about this article.

          Request Permissions

          Check for updates

          Qualifiers

          • research-article

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader