Abstract
We present the first method to accurately track the invisible jaw based solely on the visible skin surface, without the need for any markers or augmentation of the actor. As such, the method can readily be integrated with off-the-shelf facial performance capture systems. The core idea is to learn a non-linear mapping from the skin deformation to the underlying jaw motion on a dataset where ground-truth jaw poses have been acquired, and then to retarget the mapping to new subjects. Solving for the jaw pose plays a central role in visual effects pipelines, since accurate jaw motion is required when retargeting to fantasy characters and for physical simulation. Currently, this task is performed mostly manually to achieve the desired level of accuracy, and the presented method has the potential to fully automate this labour intense and error prone process.
- Sameer Agarwal, Keir Mierle, and Others. 2016. Ceres Solver, http://ceres-solver.org.Google Scholar
- Eiichi Bando, Keisuke Nishigawa, Masanori Nakano, Hisahiro Takeuchi, Shuji Shigemoto, Kazuo Okura, Toyoko Satsuma, and Takeshi Yamamoto. 2009. Current status of researches on jaw movement and occlusion for clinical application. Japanese Dental Science Review 45, 2 (2009), 83--97.Google Scholar
Cross Ref
- Thabo Beeler and Derek Bradley. 2014. Rigid stabilization of facial expressions. ACM Transactions on Graphics 33, 4 (2014), 1--9. Google Scholar
Digital Library
- Thabo Beeler, Fabian Hahn, Derek Bradley, Bernd Bickel, Paul Beardsley, Craig Gotsman, Robert W. Sumner, and Markus Gross. 2011. High-quality passive facial performance capture using anchor frames. ACM Transactions on Graphics (2011), 1. arXiv:arXiv:1011.1669v3 Google Scholar
Digital Library
- Enrique Bermejo, Carmen Campomanes-Álvarez, Andrea Valsecchi, Oscar Ibáñez, Sergio Damas, and Oscar Cordón. 2017. Genetic algorithms for skull-face overlay including mandible articulation. Information Sciences 420 (2017), 200--217. Google Scholar
Digital Library
- Sofien Bouaziz, Yangang Wang, and Mark Pauly. 2013. Online modeling for realtime facial animation. ACM Transactions on Graphics 32, 4 (2013), 40:1--40:10. Google Scholar
Digital Library
- Derek Bradley, Wolfgang Heidrich, Tiberiu Popa, and Alia Sheffer. 2010. High Resolution Passive Facial Performance Capture. ACM Transactions on Graphics 29, 4 (2010), 41:1--41:10. Google Scholar
Digital Library
- P. H. Buschang, H. Hayasaki, and G. S. Throckmorton. 2000. Quantification of human chewing-cycle kinematics. Archives of Oral Biology 45, 6 (2000), 461--474.Google Scholar
Cross Ref
- Peter H. Buschang, Gaylord S. Throckmorton, Dawn Austin, and Ana M. Wintergerst. 2007. Chewing cycle kinematics of subjects with deepbite malocclusion. American Journal of Orthodontics and Dentofacial Orthopedics 131, 5 (2007), 627--634.Google Scholar
Cross Ref
- Chen Cao, Derek Bradley, Kun Zhou, and Thabo Beeler. 2015. Real-time high-fidelity facial performance capture. ACM Transactions on Graphics 34, 4 (2015), 46:1--46:9. Google Scholar
Digital Library
- Chen Cao, Qiming Hou, and Kun Zhou. 2014. Displaced Dynamic Expression Regression for Real-time Facial Tracking and Animation. ACM Trans. Graph. 33, 4 (2014), 43:1--43:10. Google Scholar
Digital Library
- P. O. Eriksson, B. Häggman-Henrikson, E. Nordh, and H. Zafar. 2000. Co-ordinated mandibular and head-neck movements during rhythmic jaw activities in man. Journal of Dental Research 79, 6 (2000), 1378--1384.Google Scholar
Cross Ref
- Virgilio F. Ferrario, Chiarella Sforza, Nicola Lovecchio, and Fabrizio Mian. 2005. Quantification of translational and gliding components in human temporomandibular joint during mouth opening. Archives of Oral Biology 50, 5 (2005), 507--515.Google Scholar
Cross Ref
- Graham Fyffe, Tim Hawkins, Chris Watts, Wan-Chun Ma, and Paul Debevec. 2011. Comprehensive Facial Performance Capture. In Eurographics.Google Scholar
- G Fyffe, K Nagano, L Huynh, S Saito, J Busch, A Jones, H Li, and P Debevec. 2017. Multi-View Stereo on Consistent Face Topology. Comput. Graph. Forum 36, 2 (2017), 295--309. Google Scholar
Digital Library
- Pablo Garrido, Levi Valgaerts, Chenglei Wu, and Christian Theobalt. 2013. Reconstructing Detailed Dynamic Face Geometry from Monocular Video. In {ACM} Trans. Graph. (Proceedings of SIGGRAPH Asia 2013), Vol. 32. 158:1--158:10. Google Scholar
Digital Library
- John C Gower. 1975. Generalized procrustes analysis. Psychometrika 40, 1 (1975), 33--51.Google Scholar
Cross Ref
- Pei-Lun Hsieh, Chongyang Ma, Jihun Yu, and Hao Li. 2015. Unconstrained Realtime Facial Performance Capture. In Computer Vision and Pattern Recognition (CVPR).Google Scholar
- Davis E King. 2009. Dlib-ml: A Machine Learning Toolkit. Journal of Machine Learning Research 10 (2009), 1755--1758. Google Scholar
Digital Library
- Soichiro Kinuta, Kazumichi Wakabayashi, Taiji Sohmura, Tetsuya Kojima, Takahiro Mizumori, Takashi Nakamura, Junzo Takahashi, and Hirofumi Yatani. 2005. Measurement of Masticatory Movement by a New Jaw Tracking System Using a Home Digital Camcorder. Dental Materials Journal 24, 4 (2005), 661--666.Google Scholar
Cross Ref
- Samuli Laine, Tero Karras, Timo Aila, Antti Herva, Shunsuke Saito, Ronald Yu, Hao Li, and Jaakko Lehtinen. 2017. Production-level Facial Performance Capture Using Deep Convolutional Neural Networks. In Proc. SCA. 10:1--10:10. Google Scholar
Digital Library
- Hao Li, Jihun Yu, Yuting Ye, and Chris Bregler. 2013. Realtime facial animation with on-the-fly correctives. ACM Transactions on Graphics 32, 4 (2013), 42:1--42:10. arXiv:1111.6189vl Google Scholar
Digital Library
- Naser Mostashiri, Jaspreet Dhupia, Alexander Verl, and Weiliang Xu. 2018. A Novel Spatial Mandibular Motion-Capture System Based on Planar Fiducial Markers. IEEE Sensors Journal 18, 24 (2018), 10096--10104.Google Scholar
Cross Ref
- M. G. Piancino, T. Vallelonga, C. Debernardi, and P. Bracco. 2013. Deep bite: A case report with chewing pattern and electromyographic activity before and after therapy with function generating bite. European Journal of Paediatric Dentistry 14, 2 (2013), 156--159.Google Scholar
- AI P Pinheiro, A O Andrade, A A Pereira, and D Bellomo. 2008. A computational method for recording and analysis of mandibular movements. Journal of applied oral science : revista FOB 16, 5 (2008), 321--7.Google Scholar
Cross Ref
- J. F. Prinz. 1997. The cybermouse: A simple method of describing the trajectory of the human mandible in three dimensions. Journal of Biomechanics 30, 6 (1997), 643--645.Google Scholar
Cross Ref
- Isa C T Santos, João Manuel R S Tavares, Joaquim G Mendes, and Manuel P F Paulo. 2006. A System for Analysis of the 3D Mandibular Movement using Magnetic Sensors and Neuronal Networks. Proceedings of the 2nd International Workshop on Artificial Neural Networks and Intelligent Information Processing 2006 (2006), 54--63.Google Scholar
- Fuhao Shi, Hsiang-Tao Wu, Xin Tong, and Jinxiang Chai. 2014. Automatic Acquisition of High-fidelity Facial Performances Using Monocular Videos. ACM Transactions on Graphics (Proceedings of SIGGRAPH Asia 2014) 33, 6 (2014). Google Scholar
Digital Library
- Supasorn Suwajanakorn, Ira Kemelmacher-Shlizerman, and Steven M Seitz. 2014. Total Moving Face Reconstruction. In ECCV.Google Scholar
- Yuto Tanaka, Takafumi Yamada, Yoshinobu Maeda, and Kazunori Ikebe. 2016. Markerless three-dimensional tracking of masticatory movement. Journal of Biomechanics 49, 3 (2016), 442--449.Google Scholar
Cross Ref
- Ayush Tewari, Michael Zollöfer, Hyeongwoo Kim, Pablo Garrido, Florian Bernard, Patrick Perez, and Christian Theobalt. 2017. MoFA: Model-based Deep Convolutional Face Autoencoder for Unsupervised Monocular Reconstruction. In Proc. of IEEE ICCV.Google Scholar
- Justus Thies, Michael Zollhöfer, Matthias Nießner, Levi Valgaerts, Marc Stamminger, and Christian Theobalt. 2015. Real-time Expression Transfer for Facial Reenactment. ACM Trans. Graph. 34, 6 (2015), 183:1--183:14. Google Scholar
Digital Library
- J Thies, M Zollhöfer, M Stamminger, C Theobalt, and M Nießner. 2016. Face2Face: Real-time Face Capture and Reenactment of RGB Videos. In Proc. of IEEE CVPR.Google Scholar
Digital Library
- J Thies, M Zollhöfer, M Stamminger, C Theobalt, and M Nießner. 2018. HeadOn: Realtime Reenactment of Human Portrait Videos. ACM Transactions on Graphics 2018 (TOG) (2018). Google Scholar
Digital Library
- Levi Valgaerts, Chenglei Wu, Andrés Bruhn, Hans-Peter Seidel, and Christian Theobalt. 2012. Lightweight Binocular Facial Performance Capture under Uncontrolled Lighting. ACM Transactions on Graphics 31, 6 (2012), 187:1--187:11. Google Scholar
Digital Library
- Thibaut Weise, Sofien Bouaziz, Hao Li, and Mark Pauly. 2011. Realtime Performance-Based Facial Animation. ACM Trans. Graphics (Proc. SIGGRAPH) 30, 4 (2011), 77:1--77:10. Google Scholar
Digital Library
- B. Wiesinger, B. Häggman-Henrikson, A. Wänman, M. Lindkvist, and F. Hellström. 2014. Jaw-opening accuracy is not affected by masseter muscle vibration in healthy men. Experimental Brain Research 232, 11 (2014), 3501--3508.Google Scholar
Cross Ref
- Erin M Wilson and Gary Weismer. 2012. Motion for Early Chewing : Preliminary Findings. Journal of Speech, Language, and Hearing Research 55, 2 (2012), 626--638.Google Scholar
Cross Ref
- A. M. Wintergerst, P. H. Buschang, and G. S. Throckmorton. 2004. Reducing within-subject variation in chewing cycle kinematics - A statistical approach. Archives of Oral Biology 49, 12 (2004), 991--1000.Google Scholar
Cross Ref
- Chenglei Wu, Derek Bradley, Markus Gross, and Thabo Beeler. 2016. An anatomically-constrained local deformation model for monocular face capture. ACM Transactions on Graphics 35, 4 (2016), 1--12. Google Scholar
Digital Library
- Wenwu Yang, Nathan Marshak, Daniel Sýkora, Srikumar Ramalingam, and Ladislav Kavan. 2018. Building Anatomically Realistic Jaw Kinematics Model from Data. CoRR abs/1805.0 (2018). arXiv:1805.05903 http://arxiv.org/abs/1805.05903Google Scholar
- H. Zafar, P. O. Eriksson, E. Nordh, and B. Häggman-Henrikson. 2000. Wireless optoelectronic recordings of mandibular and associated head-neck movements in man: A methodological study. Journal of Oral Rehabilitation 27, 3 (2000), 227--238.Google Scholar
Cross Ref
- Gaspard Zoss, Derek Bradley, Pascal Bérard, and Thabo Beeler. 2018. An Empirical Rig for Jaw Animation. ACM Transactions on Graphics 37, 4 (2018), 59:1--59:12. Google Scholar
Digital Library
Index Terms
Accurate markerless jaw tracking for facial performance capture
Recommendations
An empirical rig for jaw animation
In computer graphics the motion of the jaw is commonly modelled by up-down and left-right rotation around a fixed pivot plus a forward-backward translation, yielding a three dimensional rig that is highly suited for intuitive artistic control. The ...
Lightweight binocular facial performance capture under uncontrolled lighting
Recent progress in passive facial performance capture has shown impressively detailed results on highly articulated motion. However, most methods rely on complex multi-camera set-ups, controlled lighting or fiducial markers. This prevents them from ...
3D markerless motion tracking in real-time using a single camera
IDEAL'11: Proceedings of the 12th international conference on Intelligent data engineering and automated learningWe present a novel motion tracking system that estimates the three-dimensional position of a moving object in real time by analyzing the image stream from a single lowest-end camera. Tracking is achieved without the need of any markers, calibration, or ...





Comments