skip to main content
research-article
Public Access

Poly-Spline Finite-Element Method

Published:28 March 2019Publication History
Skip Abstract Section

Abstract

We introduce an integrated meshing and finite-element method pipeline enabling solution of partial differential equations in the volume enclosed by a boundary representation. We construct a hybrid hexahedral-dominant mesh, which contains a small number of star-shaped polyhedra, and build a set of high-order bases on its elements, combining triquadratic B-splines, triquadratic hexahedra, and harmonic elements. We demonstrate that our approach converges cubically under refinement, while requiring around 50% of the degrees of freedom than a similarly dense hexahedral mesh composed of triquadratic hexahedra. We validate our approach solving Poisson’s equation on a large collection of models, which are automatically processed by our algorithm, only requiring the user to provide boundary conditions on their surface.

Skip Supplemental Material Section

Supplemental Material

a19-schneider.mp4

References

  1. Martin Aigner, Christoph Heinrich, Bert Jüttler, Elisabeth Pilgerstorfer, Bernd Simeon, and Vuong. 2009. Swept Volume Parameterization for Isogeometric Analysis.Google ScholarGoogle Scholar
  2. Douglas Arnold, Daniele Boffi, and Richard Falk. 2002. Approximation by quadrilateral finite elements. Math. Comput. (2002).Google ScholarGoogle Scholar
  3. Yuri Bazilevs, L. Beirao da Veiga, J Austin Cottrell, Thomas J. R. Hughes, and Giancarlo Sangalli. 2006. Isogeometric analysis: Approximation, stability and error estimates for h-refined meshes. Math. Meth. Appl. Sci. (2006).Google ScholarGoogle Scholar
  4. L. Beirão Da Veiga, F. Brezzi, A. Cangiani, G. Manzini, L. D. Marini, and A. Russo. 2013. Basic principles of virtual element methods. Math. Meth. Appl. Sci. (2013).Google ScholarGoogle Scholar
  5. Steven E. Benzley, Ernest Perry, Karl Merkley, Brett Clark, and Greg Sjaardema. 1995. A comparison of all hexagonal and all tetrahedral finite element meshes for elastic and elasto-plastic analysis. In Proceedings of the 4th International Meshing Roundtable.Google ScholarGoogle Scholar
  6. J. E. Bishop. 2014. A displacement-based finite element formulation for general polyhedra using harmonic shape functions. Int. J. Numer. Methods Eng. (2014).Google ScholarGoogle ScholarCross RefCross Ref
  7. Dietrich Braess. 2007. Finite Elements: Theory, Fast Solvers, and Applications in Solid Mechanics.Google ScholarGoogle ScholarCross RefCross Ref
  8. R. T. Q. Chen, Y. Rubanova, J. Bettencourt, and D. Duvenaud. 2018. Neural ordinary differential equations. Advances in Neural Information Processing Systems 31, S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett (Eds.). Curran Associates, Inc., 6571–6583. http://papers.nips.cc/paper/7892-neural-ordinary-differential-equations.pdf.Google ScholarGoogle Scholar
  9. A. O. Cifuentes and A. Kalbag. 1992. A performance study of tetrahedral and hexahedral elements in 3-D finite element structural analysis. Finite Elements in Analysis and Design (1992). Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. J. Austin Cottrell, Thomas J. R. Hughes, and Yuri Bazilevs. 2009. Isogeometric Analysis: Toward Integration of CAD and FEA. Google ScholarGoogle ScholarCross RefCross Ref
  11. L. Beirão da Veiga, A. Buffa, D. Cho, and G. Sangalli. 2011. Isogeometric analysis using T-splines on two-patch geometries. Comput. Meth. Appl. Mech. Eng. (2011).Google ScholarGoogle Scholar
  12. Blanca Ayuso de Dios, Konstantin Lipnikov, and Gianmarco Manzini. 2016. The nonconforming virtual element method. ESAIM: Mathematical Modelling and Numerical Analysis (2016).Google ScholarGoogle Scholar
  13. Luke Engvall and John A. Evans. 2017. Isogeometric unstructured tetrahedral and mixed-element Bernstein-Bezier discretizations. Comput. Meth. Appl. Mech. Eng. (2017).Google ScholarGoogle Scholar
  14. Xianzhong Fang, Weiwei Xu, Hujun Bao, and Jin Huang. 2016. All-hex meshing using closed-form induced polycube. ACM Trans. Graph. (2016). Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Michael S. Floater, Géza Kós, and Martin Reimers. 2005. Mean value coordinates in 3D. Comput. Aided Geom. Des. 22, 7 (2005), 623–631. Google ScholarGoogle ScholarCross RefCross Ref
  16. Richard Franke. 1979. A Critical Comparison of Some Methods for Interpolation of Scattered Data.Google ScholarGoogle Scholar
  17. Xiaoming Fu, Chongyang Bai, and Yang Liu. 2016. Efficient volumetric PolyCube-map construction. Comput. Graph. Forum (2016). Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Xifeng Gao, Wenzel Jakob, Marco Tarini, and Daniele Panozzo. 2017a. Robust hex-dominant mesh generation using field-guided polyhedral agglomeration. ACM Trans. Graph. 36, 4 (2017), 1–13. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Xifeng Gao, Daniele Panozzo, Wenping Wang, Zhigang Deng, and Guoning Chen. 2017b. Robust structure simplification for hex re-meshing. ACM Trans. Graph. 36, 6 (2017), 1–13. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. James Gregson, Alla Sheffer, and Eugene Zhang. 2011. All-hex mesh generation via volumetric PolyCube deformation. Comput. Graph. Forum (2011).Google ScholarGoogle Scholar
  21. Kai Hormann and Natarajan Sukumar. 2008. Maximum entropy coordinates for arbitrary polytopes. Comput. Graph. Forum 27, 5 (2008), 1513–1520.Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Jin Huang, Tengfei Jiang, Zeyun Shi, Yiying Tong, Hujun Bao, and Mathieu Desbrun. 2014. L1-based construction of polycube maps from complex shapes. ACM Trans. Graph. (2014). Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Jin Huang, Yiying Tong, Hongyu Wei, and Hujun Bao. 2011. Boundary aligned smooth 3D cross-frame field. ACM Trans. Graph. (2011). Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Thomas J. R. Hughes, John A. Cottrell, and Yuri Bazilevs. 2005. Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Comput. Meth. Appl. Mech. Eng. (2005).Google ScholarGoogle Scholar
  25. Thomas J. R. Hughes. 2000. The Finite Element Method. Linear Static and Dynamic Finite Element Analysis.Google ScholarGoogle Scholar
  26. Yasushi Ito, Alan M. Shih, and Bharat K. Soni. 2009. Octree-based reasonable-quality hexahedral mesh generation using a new set of refinement templates. Int. J. Numer. Methods Eng. (2009).Google ScholarGoogle Scholar
  27. Tengfei Jiang, Jin Huang, Yiying Tong Yuanzhen Wang, and Hujun Bao. 2014. Frame field singularity correction for automatic hexahedralization. IEEE Trans. Vis. Comput. Graph. (2014). Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Pushkar Joshi, Mark Meyer, Tony DeRose, Brian Green, and Tom Sanocki. 2007. Harmonic coordinates for character articulation. ACM Trans. Graph. 26, 3 (2007), 71. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Tao Ju, Scott Schaefer, and Joe Warren. 2005. Mean value coordinates for closed triangular meshes. ACM Trans. Graph. 24, 3 (2005), 561. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Ilya Kostrikov, Zhongshi Jiang, Daniele Panozzo, Denis Zorin, and Joan Bruna. 2018. Surface networks. In Proceedings f the IEEE Conference on Computer Vision and Pattern Recognition (CVF’18). IEEE, 2540–2548.Google ScholarGoogle ScholarCross RefCross Ref
  31. Na Lei, Xiaopeng Zheng, Jian Jiang, Yu-Yao Lin, and David Xianfeng Gu. 2017. Quadrilateral and hexahedral mesh generation based on surface foliation theory. Comput. Meth. Appl. Mech. Eng. (2017).Google ScholarGoogle Scholar
  32. Bo Li, Xin Li, Kexiang Wang, and Hong Qin. 2013. Surface mesh to volumetric spline conversion with generalized polycubes. IEEE Trans. Vis. Comput. Graph. (2013). Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Yufei Li, Yang Liu, Weiwei Xu, Wenping Wang, and Baining Guo. 2012. All-hex meshing using singularity-restricted field. ACM Trans. Graph. (2012). Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Konstantin Lipnikov, Gianmarco Manzini, and Mikhail Shashkov. 2014. Mimetic finite difference method. J. Comput. Phys. (2014). Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Marco Livesu, Nicholas Vining, Alla Sheffer, James Gregson, and Riccardo Scateni. 2013. PolyCut: Monotone graph-cuts for PolyCube base-complex construction. ACM Trans. Graph. (2013). Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Gianmarco Manzini, Alessandro Russo, and N. Sukumar. 2014. New perspectives on polygonal and polyhedral finite element methods. Math. Meth. Appl. Sci. (2014).Google ScholarGoogle Scholar
  37. Loïc Maréchal. 2009. Advances in octree-based all-hexahedral mesh generation: Handling sharp features. In Proceedings of the 18th International Meshing Roundtable. Springer, 65–84. https://link.springer.com/chapter/10.1007/978-3-642-04319-25Google ScholarGoogle ScholarCross RefCross Ref
  38. Sebastian Martin. 2011. Flexible, unified and directable methods for simulating deformable objects. (2011). Ph.D. dissertation, ETH Zurich.Google ScholarGoogle Scholar
  39. Sebastian Martin, Peter Kaufmann, Mario Botsch, Martin Wicke, and Markus Gross. 2008. Polyhedral finite elements using harmonic basis functions. In Proceedings of the Symposium on Geometry Processing. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Tobias Martin and Elaine Cohen. 2010. Volumetric parameterization of complex objects by respecting multiple materials. Comput. Graph. (2010). Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. Matthias Nieser, Ulrich Reitebuch, and Konrad Polthier. 2011. CubeCover - Parameterization of 3D volumes. Comput. Graph. Forum (2011).Google ScholarGoogle Scholar
  42. Steven J. Owen and Sunil Saigal. 2000. H-Morph: An indirect approach to advancing front hex meshing. Int. J. Numer. Methods Eng. (2000).Google ScholarGoogle Scholar
  43. Julian Panetta, Qingnan Zhou, Luigi Malomo, Nico Pietroni, Paolo Cignoni, and Denis Zorin. 2015. Elastic textures for additive fabrication. ACM Trans. Graph. (2015). Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. Cosmin G. Petra, Olaf Schenk, and Mihai Anitescu. 2014a. Real-time stochastic optimization of complex energy systems on high-performance computers. IEEE Computing in Science 8 Engineering (2014).Google ScholarGoogle ScholarCross RefCross Ref
  45. Cosmin G. Petra, Olaf Schenk, Miles Lubin, and Klaus Gärtner. 2014b. An augmented incomplete factorization approach for computing the Schur complement in stochastic optimization. SIAM J. Sci. Comput. 36, 2 (2014), C139–C162.Google ScholarGoogle ScholarCross RefCross Ref
  46. Thomas W. Sederberg, David L. Cardon, G. Thomas Finnigan, Nicholas S. North, Jianmin Zheng, and Tom Lyche. 2004. T-spline simplification and local refinement. ACM Trans. Graph. (2004). Google ScholarGoogle ScholarDigital LibraryDigital Library
  47. Jason F. Shepherd and Chris R. Johnson. 2008. Hexahedral mesh generation constraints. Eng. Comput. (2008).Google ScholarGoogle Scholar
  48. Jonathan Richard Shewchuk. 1996. Triangle: Engineering a 2D Quality Mesh Generator and Delaunay Triangulator.Google ScholarGoogle Scholar
  49. Hang Si. 2015. TetGen, a delaunay-based quality tetrahedral mesh generator. ACM Trans. Math. Softw. (2015). Google ScholarGoogle ScholarDigital LibraryDigital Library
  50. Dmitry Sokolov, Nicolas Ray, Lionel Untereiner, and Bruno Lévy. 2016. Hexahedral-dominant meshing. ACM Trans. Graph. (2016). Google ScholarGoogle ScholarDigital LibraryDigital Library
  51. Matthew L. Staten, Steven J. Owen, and Ted D. Blacker. 2005. Unconstrained Paving 8 Plastering: A New Idea for All Hexahedral Mesh Generation.Google ScholarGoogle Scholar
  52. Marco Tarini, Kai Hormann, Paolo Cignoni, and Claudio Montani. 2004. PolyCube-maps. ACM Trans. Graph. (2004). Google ScholarGoogle ScholarDigital LibraryDigital Library
  53. Deepesh Toshniwal, Hendrik Speleers, René R. Hiemstra, and Thomas J. R. Hughes. 2017. Multi-degree smooth polar splines: A framework for geometric modeling and isogeometric analysis. Comput. Meth. Appl. Mech. Eng. (2017).Google ScholarGoogle Scholar
  54. Xiaodong Wei, Yongjie Jessica Zhang, Deepesh Toshniwal, Hendrik Speleers, Xin Li, Carla Manni, John A. Evans, and Thomas J. R. Hughes. 2018. Blended B-spline construction on unstructured quadrilateral and hexahedral meshes with optimal convergence rates in isogeometric analysis. Comput. Meth. Appl. Mech. Eng. (2018).Google ScholarGoogle Scholar
  55. Soji Yamakawa and Kenji Shimada. 2003. Fully-automated hex-dominant mesh generation with directionality control via packing rectangular solid cells. Int. J. Numer. Methods Eng. (2003).Google ScholarGoogle ScholarCross RefCross Ref
  56. Y. J. Zhang, X. Liang, and Guoliang Xu. 2013. A robust 2-refinement algorithm in octree or rhombic dodecahedral tree based all-hexahedral mesh generation. Comput. Meth. Appl. Mech. Eng. (2013).Google ScholarGoogle Scholar

Index Terms

  1. Poly-Spline Finite-Element Method

          Recommendations

          Comments

          Login options

          Check if you have access through your login credentials or your institution to get full access on this article.

          Sign in

          Full Access

          • Published in

            cover image ACM Transactions on Graphics
            ACM Transactions on Graphics  Volume 38, Issue 3
            June 2019
            125 pages
            ISSN:0730-0301
            EISSN:1557-7368
            DOI:10.1145/3322934
            Issue’s Table of Contents

            Copyright © 2019 ACM

            Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

            Publisher

            Association for Computing Machinery

            New York, NY, United States

            Publication History

            • Published: 28 March 2019
            • Accepted: 1 February 2019
            • Revised: 1 January 2019
            • Received: 1 June 2018
            Published in tog Volume 38, Issue 3

            Permissions

            Request permissions about this article.

            Request Permissions

            Check for updates

            Qualifiers

            • research-article
            • Research
            • Refereed

          PDF Format

          View or Download as a PDF file.

          PDF

          eReader

          View online with eReader.

          eReader

          HTML Format

          View this article in HTML Format .

          View HTML Format