skip to main content
research-article
Public Access

Coding Scheme Optimization for Fast Fluorescence Lifetime Imaging

Published:07 June 2019Publication History
Skip Abstract Section

Abstract

Fluorescence lifetime imaging (FLIM) is used for measuring material properties in a wide range of applications, including biology, medical imaging, chemistry, and material science. In frequency-domain FLIM (FD-FLIM), the object of interest is illuminated with a temporally modulated light source. The fluorescence lifetime is measured by computing the correlations of the emitted light with a demodulation function at the sensor. The signal-to-noise ratio (SNR) and the acquisition time of a FD-FLIM system is determined by the coding scheme (modulation and demodulation functions). In this article, we develop theory and algorithms for designing high-performance FD-FLIM coding schemes that can achieve high SNR and short acquisition time, given a fixed source power budget. Based on a geometric analysis of the image formation and noise model, we propose a novel surrogate objective for the performance of a given coding scheme. The surrogate objective is extremely fast to compute, and can be used to efficiently explore the entire space of coding schemes. Based on this objective, we design novel, high-performance coding schemes that achieve up to an order of magnitude shorter acquisition time as compared to existing approaches. We demonstrate the performance advantage of the proposed schemes in a variety of imaging conditions, using a modular hardware prototype that can implement various coding schemes.

Skip Supplemental Material Section

Supplemental Material

References

  1. Diego Airado-Rodríguez, Teresa Galeano-Díaz, Isabel Durán-Merás, and Jens Petter Wold. 2009. Usefulness of fluorescence excitation-emission matrices in combination with PARAFAC, as fingerprints of red wines. Journal of Agricultural and Food Chemistry 57, 5 (2009), 1711--172Google ScholarGoogle ScholarCross RefCross Ref
  2. Syed Abdullah Aljunid, Gleb Maslennikov, Yimin Wang, Hoang Lan Dao, Valerio Scarani, and Christian Kurtsiefer. 2013. Excitation of a single atom with exponentially rising light pulses. Physical Review Letters 111, 10 (2013), 103001.Google ScholarGoogle ScholarCross RefCross Ref
  3. Philippe I. H. Bastiaens and Anthony Squire. 1999. Fluorescence lifetime imaging microscopy: Spatial resolution of biochemical processes in the cell. Trends in Cell Biology 9, 2 (1999), 48--52.Google ScholarGoogle ScholarCross RefCross Ref
  4. Wolfgang Becker. 2014. The bh TCSPC Handbook. Becker 8 Hickl.Google ScholarGoogle Scholar
  5. Oscar Beijbom, Tali Treibitz, David I. Kline, Gal Eyal, Adi Khen, Benjamin Neal, Yossi Loya, B. Greg Mitchell, and David Kriegman. 2016. Improving automated annotation of benthic survey images using wide-band fluorescence. Scientific Reports 6 (2016), 23166.Google ScholarGoogle ScholarCross RefCross Ref
  6. Mikhail Y. Berezin and Samuel Achilefu. 2010. Fluorescence lifetime measurements and biological imaging. Chemical Reviews 110, 5 (2010), 2641--2684.Google ScholarGoogle ScholarCross RefCross Ref
  7. Ayush Bhandari, Christopher Barsi, and Ramesh Raskar. 2015a. Blind and reference-free fluorescence lifetime estimation via consumer time-of-flight sensors. Optica 2, 11 (Nov. 2015), 965--973.Google ScholarGoogle ScholarCross RefCross Ref
  8. Ayush Bhandari, Christopher Barsi, and Ramesh Raskar. 2015b. Blind and reference-free fluorescence lifetime estimation via consumer time-of-flight sensors. Optica 2, 11 (2015), 965--973.Google ScholarGoogle ScholarCross RefCross Ref
  9. Ayush Bhandari and Ramesh Raskar. 2016. Signal processing for time-of-flight imaging sensors: An introduction to inverse problems in computational 3-D imaging. IEEE Signal Processing Magazine 33, 5 (2016), 45--58.Google ScholarGoogle ScholarCross RefCross Ref
  10. M. J. Booth and T. Wilson. 2004. Low-cost, frequency-domain, fluorescence lifetime confocal microscopy. Journal of Microscopy 214, 1 (2004), 36--42.Google ScholarGoogle ScholarCross RefCross Ref
  11. A. Colasanti, A. Kisslinger, G. Fabbrocini, R. Liuzzi, M. Quarto, P. Riccio, G. Roberti, and F. Villani. 2000. MS-2 fibrosarcoma characterization by laser induced autofluorescence. Lasers in Surgery and Medicine 26, 5 (2000), 441--448.Google ScholarGoogle ScholarCross RefCross Ref
  12. Daniela Comelli, Cosimo D’Andrea, Gianluca Valentini, Rinaldo Cubeddu, Chiara Colombo, and Lucia Toniolo. 2004. Fluorescence lifetime imaging and spectroscopy as tools for nondestructive analysis of works of art. Applied Optics 43, 10 (2004), 2175--2183.Google ScholarGoogle ScholarCross RefCross Ref
  13. Kalyanmoy Deb, Amrit Pratap, Sameer Agarwal, and TAMT Meyarivan. 2002. A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation 6, 2 (2002), 182--197. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Michelle A. Digman, Valeria R. Caiolfa, Moreno Zamai, and Enrico Gratton. 2008. The phasor approach to fluorescence lifetime imaging analysis. Biophysical Journal 94, 2 (2008), L14--L16.Google ScholarGoogle ScholarCross RefCross Ref
  15. L. A. Donaldson and K. Radotic. 2013. Fluorescence lifetime imaging of lignin autofluorescence in normal and compression wood. Journal of Microscopy 251, 2 (2013), 178--187.Google ScholarGoogle ScholarCross RefCross Ref
  16. Alan Elder, Simon Schlachter, and Clemens F. Kaminski. 2008. Theoretical investigation of the photon efficiency in frequency-domain fluorescence lifetime imaging microscopy. JOSA A 25, 2 (2008), 452--462.Google ScholarGoogle ScholarCross RefCross Ref
  17. Dan Elson, Jose Requejo-Isidro, Ian Munro, Fred Reavell, Jan Siegel, Klaus Suhling, Paul Tadrous, Richard Benninger, Peter Lanigan, James McGinty, et al. 2004. Time-domain fluorescence lifetime imaging applied to biological tissue. Photochemical 8 Photobiological Sciences 3, 8 (2004), 795--801.Google ScholarGoogle Scholar
  18. Alessandro Esposito, Hans Gerritsen, Thierry Oggier, Felix Lustenberger, and Fred S. Wouters. 2006. Innovating lifetime microscopy: A compact and simple tool for life sciences, screening, and diagnostics. Journal of Biomedical Optics 11, 3 (2006), 034016.Google ScholarGoogle ScholarCross RefCross Ref
  19. Alessandro Esposito, Hans C. Gerritsen, and Fred S. Wouters. 2007. Optimizing frequency-domain fluorescence lifetime sensing for high-throughput applications: Photon economy and acquisition speed. JOSA A 24, 10 (2007), 3261--3273.Google ScholarGoogle ScholarCross RefCross Ref
  20. A. Esposito, T. Oggier, H. C. Gerritsen, F. Lustenberger, and F. S. Wouters. 2005. All-solid-state lock-in imaging for wide-field fluorescence lifetime sensing. Optics Express 13, 24 (2005), 9812--9821.Google ScholarGoogle ScholarCross RefCross Ref
  21. Ying Fu, Antony Lam, Yasuyuki Matsushita, Imari Sato, and Yoichi Sato. 2014. Interreflection removal using fluorescence. In European Conference on Computer Vision. Springer, 203--217.Google ScholarGoogle ScholarCross RefCross Ref
  22. Mohit Gupta, Andreas Velten, Shree K. Nayar, and Eric Breitbach. 2018. What are optimal coding functions for time-of-flight imaging? ACM Transactions on Graphics (TOG) 37, 2 (2018), 13. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Shuai Han, Yasuyuki Matsushita, Imari Sato, Takahiro Okabe, and Yoichi Sato. 2012. Camera spectral sensitivity estimation from a single image under unknown illumination by using fluorescence. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR’12). IEEE, 805--812.Google ScholarGoogle Scholar
  24. Miles Hansard, Seungkyu Lee, Ouk Choi, and Radu Patrice Horaud. 2012. Time-of-Flight Cameras: Principles, Methods and Applications. Springer Science 8 Business Media. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Samuel W. Hasinoff, Frédo Durand, and William T. Freeman. 2010. Noise-optimal capture for high dynamic range photography. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR’10). IEEE, 553--560.Google ScholarGoogle Scholar
  26. Felix Heide, Matthias B. Hullin, James Gregson, and Wolfgang Heidrich. 2013. Low-budget transient imaging using photonic mixer devices. ACM Transactions on Graphics (ToG) 32, 4 (2013), 45.Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Felix Heide, Lei Xiao, Andreas Kolb, Matthias B. Hullin, and Wolfgang Heidrich. 2014. Imaging in scattering media using correlation image sensors and sparse convolutional coding. Optics Express 22, 21 (2014), 26338--26350.Google ScholarGoogle ScholarCross RefCross Ref
  28. J. Michael Hollas. 2004. Modern Spectroscopy. John Wiley 8 Sons.Google ScholarGoogle Scholar
  29. Matthias B. Hullin, Martin Fuchs, Ivo Ihrke, Hans-Peter Seidel, and Hendrik P. A. Lensch. 2008. Fluorescent immersion range scanning. ACM Transactions on Graphics 27, 3 (Aug. 2008), Article 87, 10 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Matthias B. Hullin, Johannes Hanika, Boris Ajdin, Hans-Peter Seidel, Jan Kautz, and Hendrik P. A. Lensch. 2010. Acquisition and analysis of bispectral bidirectional reflectance and reradiation distribution functions. ACM Transactions on Graphics 29, 4 (July 2010), Article 97, 7 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Moon S. Kim, Byoung-Kwan Cho, Alan M. Lefcourt, Yud-Ren Chen, and Sukwon Kang. 2008. Multispectral fluorescence lifetime imaging of feces-contaminated apples by time-resolved laser-induced fluorescence imaging system with tunable excitation wavelengths. Applied Optics 47, 10 (2008), 1608--1616.Google ScholarGoogle ScholarCross RefCross Ref
  32. Joseph R. Lakowicz. 2006. Principles of Fluorescence Spectroscopy. Springer.Google ScholarGoogle Scholar
  33. R. Lange. 2000. 3D Time of Flight Distance Measurement with Custom Solid State Image Sensors in CMOS, CCD Technology. https://books.google.com/books?id=upMuHwAACAAJGoogle ScholarGoogle Scholar
  34. Lea Lenhardt, Rasmus Bro, Ivana Zeković, Tatjana Dramićanin, and Miroslav D. Dramićanin. 2015. Fluorescence spectroscopy coupled with PARAFAC and PLS DA for characterization and classification of honey. Food Chemistry 175 (2015), 284--291.Google ScholarGoogle ScholarCross RefCross Ref
  35. Yuxiang Lin and Arthur F. Gmitro. 2010. Statistical analysis and optimization of frequency-domain fluorescence lifetime imaging microscopy using homodyne lock-in detection. JOSA A 27, 5 (2010), 1145--1155.Google ScholarGoogle ScholarCross RefCross Ref
  36. Douglas Magde, Gail E. Rojas, and Paul G. Seybold. 1999. Solvent dependence of the fluorescence lifetimes of xanthene dyes. Photochemistry and Photobiology 70, 5 (1999), 737--744.Google ScholarGoogle ScholarCross RefCross Ref
  37. John A. Nelder and Roger Mead. 1965. A simplex method for function minimization. The Computer Journal 7, 4 (1965), 308--313.Google ScholarGoogle ScholarCross RefCross Ref
  38. Austin Nevin, Daniela Comelli, Gianluca Valentini, Demetrios Anglos, Aviva Burnstock, Sharon Cather, and Rinaldo Cubeddu. 2007. Time-resolved fluorescence spectroscopy and imaging of proteinaceous binders used in paintings. Analytical and Bioanalytical Chemistry 388, 8 (2007), 1897--1905.Google ScholarGoogle ScholarCross RefCross Ref
  39. Lucio Pancheri, Nicola Massari, and David Stoppa. 2013. SPAD image sensor with analog counting pixel for time-resolved fluorescence detection. IEEE Transactions on Electron Devices 60, 10 (2013), 3442--3449.Google ScholarGoogle ScholarCross RefCross Ref
  40. Johan Philip and Kjell Carlsson. 2003. Theoretical investigation of the signal-to-noise ratio in fluorescence lifetime imaging. JOSA A 20, 2 (2003), 368--379.Google ScholarGoogle ScholarCross RefCross Ref
  41. Asima Pradhan, Prabir Pal, Gilles Durocher, Luc Villeneuve, Antonia Balassy, Féridoun Babai, Louis Gaboury, and Louise Blanchard. 1995. Steady state and time-resolved fluorescence properties of metastatic and non-metastatic malignant cells from different species. Journal of Photochemistry and Photobiology B: Biology 31, 3 (1995), 101--112.Google ScholarGoogle ScholarCross RefCross Ref
  42. J. Requejo-Isidro, J. McGinty, I. Munro, D. S. Elson, N. P. Galletly, M. J. Lever, M. A. A. Neil, G. W. H. Stamp, P. M. W. French, P. A. Kellett, et al. 2004. High-speed wide-field time-gated endoscopic fluorescence-lifetime imaging. Optics Letters 29, 19 (2004), 2249--2251.Google ScholarGoogle ScholarCross RefCross Ref
  43. Imari Sato, Takahiro Okabe, and Yoichi Sato. 2012. Bispectral photometric stereo based on fluorescence. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR’12). IEEE, 270--277.Google ScholarGoogle ScholarCross RefCross Ref
  44. S. Schlachter, A. D. Elder, A. Esposito, G. S. Kaminski, J. H. Frank, L. K. Van Geest, and C. F. Kaminski. 2009. mhFLIM: Resolution of heterogeneous fluorescence decays in widefield lifetime microscopy. Optics Express 17, 3 (2009), 1557--1570.Google ScholarGoogle ScholarCross RefCross Ref
  45. L. K. Seah, U. S. Dinish, W. F. Phang, Z. X. Chao, and V. M. Murukeshan. 2005. Fluorescence optimisation and lifetime studies of fingerprints treated with magnetic powders. Forensic Science International 152, 2–3 (2005), 249--257.Google ScholarGoogle ScholarCross RefCross Ref
  46. L. K. Seah, P. Wang, V. M. Murukeshan, and Z. X. Chao. 2006. Application of fluorescence lifetime imaging (FLIM) in latent finger mark detection. Forensic Science International 160, 2–3 (2006), 109--114.Google ScholarGoogle ScholarCross RefCross Ref
  47. Nathan C. Shaner, Gerard G. Lambert, Andrew Chammas, Yuhui Ni, Paula J. Cranfill, Michelle A. Baird, Brittney R. Sell, John R. Allen, Richard N. Day, Maria Israelsson, et al. 2013. A bright monomeric green fluorescent protein derived from Branchiostoma lanceolatum. Nature Methods 10, 5 (2013), 407.Google ScholarGoogle ScholarCross RefCross Ref
  48. Wen Shi, Xiaohua Li, and Huimin Ma. 2014. Fluorescent probes and nanoparticles for intracellular sensing of pH values. Methods and Applications in Fluorescence 2, 4 (2014), 042001.Google ScholarGoogle ScholarCross RefCross Ref
  49. Ewa Sikorska, Tomasz Górecki, Igor V. Khmelinskii, Marek Sikorski, and Jacek Kozioł. 2005. Classification of edible oils using synchronous scanning fluorescence spectroscopy. Food Chemistry 89, 2 (2005), 217--225.Google ScholarGoogle ScholarCross RefCross Ref
  50. Shiwen Sun, Birgit Ungerböck, and Torsten Mayr. 2015. Imaging of oxygen in microreactors and microfluidic systems. Methods and Applications in Fluorescence 3, 3 (2015), 034002.Google ScholarGoogle ScholarCross RefCross Ref
  51. Virginia Torczon. 1997. On the convergence of pattern search algorithms. SIAM Journal on Optimization 7, 1 (1997), 1--25. Google ScholarGoogle ScholarDigital LibraryDigital Library
  52. Tali Treibitz, Zak Murez, B. Greg Mitchell, and David Kriegman. 2012. Shape from fluorescence. In European Conference on Computer Vision. Springer, 292--306. Google ScholarGoogle ScholarDigital LibraryDigital Library
  53. Andreas Velten, Thomas Willwacher, Otkrist Gupta, Ashok Veeraraghavan, Moungi G. Bawendi, and Ramesh Raskar. 2012. Recovering three-dimensional shape around a corner using ultrafast time-of-flight imaging. Nature Communications 3 (2012), 745.Google ScholarGoogle ScholarCross RefCross Ref
  54. Charles W. Wilkerson Jr., Peter M. Goodwin, W. Patrick Ambrose, John C. Martin, and Richard A. Keller. 1993. Detection and lifetime measurement of single molecules in flowing sample streams by laser-induced fluorescence. Applied Physics Letters 62, 17 (1993), 2030--2032.Google ScholarGoogle ScholarCross RefCross Ref
  55. Di Wu, Matthew O’Toole, Andreas Velten, Amit Agrawal, and Ramesh Raskar. 2012. Decomposing global light transport using time of flight imaging. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR’12). IEEE, 366--373.Google ScholarGoogle Scholar
  56. Qiaole Zhao, Ian T. Young, and Jan Geert Sander De Jong. 2011. Photon budget analysis for fluorescence lifetime imaging microscopy. Journal of Biomedical Optics 16, 8 (2011), 086007.Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. Coding Scheme Optimization for Fast Fluorescence Lifetime Imaging

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in

    Full Access

    • Published in

      cover image ACM Transactions on Graphics
      ACM Transactions on Graphics  Volume 38, Issue 3
      June 2019
      125 pages
      ISSN:0730-0301
      EISSN:1557-7368
      DOI:10.1145/3322934
      Issue’s Table of Contents

      Copyright © 2019 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 7 June 2019
      • Accepted: 1 March 2019
      • Revised: 1 November 2018
      • Received: 1 June 2018
      Published in tog Volume 38, Issue 3

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article
      • Research
      • Refereed

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    HTML Format

    View this article in HTML Format .

    View HTML Format