research-article

Computing Hypergeometric Functions Rigorously

Published:08 August 2019Publication History
Skip Abstract Section

Abstract

We present an efficient implementation of hypergeometric functions in arbitrary-precision interval arithmetic. The functions 0F1, 1F1, 2F1, and 2F0 (or the Kummer U-function) are supported for unrestricted complex parameters and argument, and, by extension, we cover exponential and trigonometric integrals, error functions, Fresnel integrals, incomplete gamma and beta functions, Bessel functions, Airy functions, Legendre functions, Jacobi polynomials, complete elliptic integrals, and other special functions. The output can be used directly for interval computations or to generate provably correct floating-point approximations in any format. Performance is competitive with earlier arbitrary-precision software and sometimes orders of magnitude faster. We also partially cover the generalized hypergeometric function pFq and computation of high-order parameter derivatives.

References

  1. M. Abramowitz and I. A. Stegun. 1964. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. Dover, New York, NY.Google ScholarGoogle Scholar
  2. D. H. Bailey. 2015. MPFUN2015: A thread-safe arbitrary precision computation package. Manuscript. https://www.davidhbailey.com/dhbpapers/mpfun2015.pdf.Google ScholarGoogle Scholar
  3. D. H. Bailey and J. M. Borwein. 2015. High-precision arithmetic in mathematical physics. Mathematics 3, 2 (2015), 337--367.Google ScholarGoogle ScholarCross RefCross Ref
  4. D. H. Bailey, J. M. Borwein, and R. E. Crandall. 2006. Integrals of the Ising class. J. Phys. A: Math. Gen. 39, 40 (2006), 12271--12302.Google ScholarGoogle ScholarCross RefCross Ref
  5. W. Becken and P. Schmelcher. 2000. The analytic continuation of the Gaussian hypergeometric function <sub>2</sub>F<sub>1</sub> (a, b; c; z) for arbitrary parameters. J. Comput. Appl. Math. 126, 1--2 (2000), 449--478. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. D. J. Bernstein. 2008. Fast multiplication and its applications. Algorithmic Number Theory. Lattices, Number Fields, Curves and Cryptography, J.P. Buhler and P. Stevenhagen (Eds.), Vol. 44. http://www.cambridge.org/catalogue/catalogue.asp?isbn&equals;9780521808545.Google ScholarGoogle Scholar
  7. R. Bloemen. 2009. Even faster &zeta; (2n) calculation! Retrieved from https://web.archive.org/web/20141101133659/http://xn--2-umb.com/09/11/even-faster-zeta-calculation.Google ScholarGoogle Scholar
  8. A. I. Bogolubsky and S. L. Skorokhodov. 2006. Fast evaluation of the hypergeometric function <sub>p</sub>F<sub>p&minus;1</sub> (a; b; z) at the singular point z &equals; 1 by means of the Hurwitz zeta function &zeta; (&alpha s) . Program. Comput. Softw. 32, 3 (2006), 145--153. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. A. R. Booker, A. Strömbergsson, and A. Venkatesh. 2006. Effective computation of Maass cusp forms. International Mathematics Research Notices.Google ScholarGoogle Scholar
  10. J. M. Borwein, D. M. Bradley, and R. E. Crandall. 2000. Computational strategies for the Riemann zeta function. J. Comput. Appl. Math. 121, 1--2 (2000), 247--296. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. J. M. Borwein and I. J. Zucker. 1992. Fast evaluation of the gamma function for small rational fractions using complete elliptic integrals of the first kind. IMA J. Numer. Anal. 12, 4 (1992), 519--526.Google ScholarGoogle ScholarCross RefCross Ref
  12. P. Borwein. 2000. An efficient algorithm for the Riemann zeta function. Can. Math. Soc. Conf. Proc. 27 (2000), 29--34.Google ScholarGoogle Scholar
  13. P. B. Borwein. 1987. Reduced complexity evaluation of hypergeometric functions. J. Approx. Theory 50, 3 (Jul. 1987). Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. A. Bostan, P. Gaudry, and É. Schost. 2007. Linear recurrences with polynomial coefficients and application to integer factorization and Cartier-Manin operator. SIAM J. Comput. 36, 6 (2007), 1777--1806. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. R. P. Brent. 1976. The complexity of multiple-precision arithmetic. The Complexity of Computational Problem Solving, R. P. Brent and R. S. Anderssen (Eds.). University of Queensland Press.Google ScholarGoogle Scholar
  16. R. P. Brent. 2016. On asymptotic approximations to the log-Gamma and Riemann-Siegel theta functions. arXiv preprint arXiv:1609.03682 (2016).Google ScholarGoogle Scholar
  17. R. P. Brent and D. Harvey. 2013. Fast computation of Bernoulli, tangent and secant numbers. In Computational and Analytical Mathematics. Springer, 127--142.Google ScholarGoogle Scholar
  18. R. P. Brent and F. Johansson. 2015. A bound for the error term in the Brent-McMillan algorithm. Math. Comp. 84, 295 (Sep. 2015), 2351--2359.Google ScholarGoogle ScholarCross RefCross Ref
  19. R. P. Brent and P. Zimmermann. 2011. Modern Computer Arithmetic. Cambridge University Press, Cambridge, UK. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. S. Chevillard and M. Mezzarobba. 2013. Multiple-precision evaluation of the Airy Ai function with reduced cancellation. In Proceedings of the 21st IEEE Symposium on Computer Arithmetic (ARITH21). 175--182. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. D. V. Chudnovsky and G. V. Chudnovsky. 1988. Approximations and complex multiplication according to Ramanujan. In Ramanujan Revisited. Academic Press, New York, NY, 375--472.Google ScholarGoogle Scholar
  22. D. V. Chudnovsky and G. V. Chudnovsky. 1990. Computer algebra in the service of mathematical physics and number theory. Comput. Math. 125 (1990), 109.Google ScholarGoogle Scholar
  23. M. Colman, A. Cuyt, and J. Van Deun. 2011. Validated computation of certain hypergeometric functions. ACM Trans. Math. Softw. 38, 2 (2011). Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Z. Du. 2006. Guaranteed Precision for Transcendental and Algebraic Computation Made Easy. Ph.D. Dissertation. New York University, New York, NY. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Z. Du, M. Eleftheriou, J. E. Moreira, and C. Yap. 2002. Hypergeometric functions in exact geometric computation. Electr. Not. Theor. Comput. Sci. 66, 1 (2002), 53--64.Google ScholarGoogle ScholarCross RefCross Ref
  26. A. Enge, P. Théveny, and P. Zimmermann. 2011. MPC: A library for multiprecision complex arithmetic with exact rounding. Retrieved from http://multiprecision.org/.Google ScholarGoogle Scholar
  27. R. Fateman. 2006. {{Maxima} numerical evaluation of 2F1} from RW Gosper. Retrieved from http://www.math.utexas.edu/pipermail/maxima/2006/000126.html.Google ScholarGoogle Scholar
  28. S. Fillebrown. 1992. Faster computation of Bernoulli numbers. J. Algor. 13, 3 (1992), 431--445. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. P. Flajolet and I. Vardi. 1996. Zeta function expansions of classical constants. Retrieved from http://algo.inria.fr/flajolet/Publications/FlVa96.pdf.Google ScholarGoogle Scholar
  30. R. C. Forrey. 1997. Computing the hypergeometric function. J. Comput. Phys. 137, 1 (1997), 79--100. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. L. Fousse, G. Hanrot, V. Lefèvre, P. Pélissier, and P. Zimmermann. 2007. MPFR: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33, 2 (Jun. 2007), 13:1--13:15. http://mpfr.org. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. D. Gaspard. 2018. Connection formulas between Coulomb wave functions. arXiv preprint arXiv:1804.10976 (2018).Google ScholarGoogle Scholar
  33. A. Gil, J. Segura, and N. M. Temme. 2007. Numerical Methods for Special Functions. SIAM, Philadelphia, PA. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. B. Haible and T. Papanikolaou. 1998. Fast multiprecision evaluation of series of rational numbers. In Proceedings of the 3rd International Symposium on Algorithmic Number Theory (ANTS-III), J. P. Buhler (Ed.). Springer, Berlin, 338--350. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. D. E. G. Hare. 1997. Computing the principal branch of log-Gamma. J. Algor. 25, 2 (1997), 221--236. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. U. D. Jentschura and E. Lötstedt. 2012. Numerical calculation of Bessel, Hankel and Airy functions. Comput. Phys. Commun. 183, 3 (2012), 506--519.Google ScholarGoogle ScholarCross RefCross Ref
  37. F. Johansson. 2013. Arb: A C library for ball arithmetic. ACM Commun. Comput. Algebr. 47, 4 (2013), 166--169. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. F. Johansson. 2014a. Evaluating parametric holonomic sequences using rectangular splitting. In Proceedings of the 39th International Symposium on Symbolic and Algebraic Computation (ISSAC’14). ACM, New York, NY, 256--263. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. F. Johansson. 2014b. Fast and Rigorous Computation of Special Functions to High Precision. Ph.D. Dissertation. RISC, Johannes Kepler University, Linz.Google ScholarGoogle Scholar
  40. F. Johansson. 2015a. Efficient implementation of elementary functions in the medium-precision range. In Proceedings of the 22nd IEEE Symposium on Computer Arithmetic (ARITH22). 83--89. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. F. Johansson. 2015b. mpmath: A Python Library for Arbitrary-precision Floating-point Arithmetic. Retrieved from http://mpmath.org.Google ScholarGoogle Scholar
  42. F. Johansson. 2015c. Rigorous high-precision computation of the Hurwitz zeta function and its derivatives. Numer. Algor. 69, 2 (Jun. 2015), 253--270. Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. F. Johansson. 2017. Arb: Efficient arbitrary-precision midpoint-radius interval arithmetic. IEEE Trans. Comput. 66, 8 (2017), 1281--1292.Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. F. Johansson and M. Mezzarobba. 2018. Fast and rigorous arbitrary-precision computation of Gauss-Legendre quadrature nodes and weights. SIAM J. Sci. Comput. 40, 6 (2018), C726--C747.Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. E. Jones, T. Oliphant, P. Peterson, et al. 2001. SciPy: Open Source Scientific Tools for Python. Retrieved from http://www.scipy.org/.Google ScholarGoogle Scholar
  46. E. A. Karatsuba. 1998. Fast evaluation of the Hurwitz zeta function and Dirichlet L-series. Prob. Inf. Transm. 34, 4 (1998).Google ScholarGoogle Scholar
  47. M. Kodama. 2011. Algorithm 912: A module for calculating cylindrical functions of complex order and complex argument. ACM Trans. Math. Software 37, 4 (Feb. 2011), 1--25. Google ScholarGoogle ScholarDigital LibraryDigital Library
  48. S. Köhler and M. Ziegler. 2008. On the stability of fast polynomial arithmetic. In Proceedings of the 8th Conference on Real Numbers and Computers. Santiago de Compostela, Spain.Google ScholarGoogle Scholar
  49. K. Kuhlman. 2015. Unconfined: Command-line Parallel Unconfined Aquifer Test Simulator. Retrieved from https://github.com/klkuhlm/unconfined.Google ScholarGoogle Scholar
  50. C. Lanczos. 1964. A precision approximation of the Gamma function. SIAM J. Numer. Anal. 1, 1 (1964), 86--96.Google ScholarGoogle Scholar
  51. Maplesoft. 2016. Maple. Retrieved from http://www.maplesoft.com/documentation_center/.Google ScholarGoogle Scholar
  52. Maxima authors. 2015. Maxima, a Computer Algebra System. Retrieved from http://maxima.sourceforge.net/.Google ScholarGoogle Scholar
  53. M. Mezzarobba. 2010. NumGfun: A package for numerical and analytic computation with D-finite functions. In Proceedings of the International Symposium on Symbolic and Algebraic Computation (ISSAC’10). 139--146. Google ScholarGoogle ScholarDigital LibraryDigital Library
  54. M. Mezzarobba. 2011. Autour de l’évaluation numérique des fonctions D-finies. Thèse de doctorat. Ecole polytechnique.Google ScholarGoogle Scholar
  55. M. Mezzarobba. 2016. Rigorous Multiple-Precision Evaluation of D-Finite Functions in SageMath. Retrieved from https://arxiv.org/abs/1607.01967.Google ScholarGoogle Scholar
  56. M. Mezzarobba and B. Salvy. 2010. Effective bounds for P-recursive sequences. J. Symbol. Comput. 45, 10 (2010), 1075--1096. Google ScholarGoogle ScholarDigital LibraryDigital Library
  57. N. Michel and M. V. Stoitsov. 2008. Fast computation of the Gauss hypergeometric function with all its parameters complex with application to the Pöschl--Teller--Ginocchio potential wave functions. Comput. Phys. Commun. 178, 7 (2008), 535--551.Google ScholarGoogle ScholarCross RefCross Ref
  58. K. E. Muller. 2001. Computing the confluent hypergeometric function, M(a, b, x) . Numer. Math. 90, 1 (2001), 179--196.Google ScholarGoogle ScholarCross RefCross Ref
  59. M. Nardin, W. F. Perger, and A. Bhalla. 1992. Numerical evaluation of the confluent hypergeometric function for complex arguments of large magnitudes. J. Comput. Appl. Math 39, 2 (1992), 193--200. Google ScholarGoogle ScholarDigital LibraryDigital Library
  60. NIST. 2016. Digital Library of Mathematical Functions. Release 1.0.11 of 2016-06-08. Retrieved from http://dlmf.nist.gov/. Online companion to Olver et al. (2010).Google ScholarGoogle Scholar
  61. F. W. J. Olver. 1997. Asymptotics and Special Functions. A K Peters, Wellesley, MA.Google ScholarGoogle Scholar
  62. F. W. J. Olver, D. W. Lozier, R. F. Boisvert, and C. W. Clark. 2010. NIST Handbook of Mathematical Functions. Cambridge University Press, New York, NY. Google ScholarGoogle ScholarDigital LibraryDigital Library
  63. J. Pearson. 2009. Computation of Hypergeometric Functions. Master’s thesis. University of Oxford.Google ScholarGoogle Scholar
  64. J. W. Pearson, S. Olver, and M. A. Porter. 2014. Numerical methods for the computation of the confluent and Gauss hypergeometric functions. arXiv:1407.7786, http://arxiv.org/abs/1407.7786 (2014).Google ScholarGoogle Scholar
  65. J. Reignier. 1999. Singularities of ordinary linear differential equations and integrability. In The Painlevé Property. Springer, Berlin, 1--33.Google ScholarGoogle Scholar
  66. N. Revol and F. Rouillier. 2005. Motivations for an arbitrary precision interval arithmetic library and the MPFI library. Reliable Comput. 11, 4 (2005), 275--290.Google ScholarGoogle ScholarCross RefCross Ref
  67. Sage developers. 2016. SageMath, the Sage Mathematics Software System (Version 7.2.0). Retrieved from http://www.sagemath.org.Google ScholarGoogle Scholar
  68. T. Schmelzer and L. N. Trefethen. 2007. Computing the Gamma function using contour integrals and rational approximations. SIAM J. Numer. Anal. 45, 2 (2007), 558--571. Google ScholarGoogle ScholarDigital LibraryDigital Library
  69. S. L. Skorokhodov. 2005. A method for computing the generalized hypergeometric function <sub>p</sub>F<sub>p&minus;1</sub> (a<sub>1</sub>, … , a<sub>p</sub> ; b<sub>1</sub>, … , b<sub>p-1</sub>; 1) in terms of the Riemann zeta function. Comput. Math. Math. Phys. 45, 4 (2005), 574--586.Google ScholarGoogle Scholar
  70. D. M. Smith. 1989. Efficient multiple-precision evaluation of elementary functions. Math. Comp. 52, 185 (1989), 131--134.Google ScholarGoogle ScholarCross RefCross Ref
  71. D. M. Smith. 2001. Algorithm: Fortran 90 software for floating-point multiple precision arithmetic, gamma and related functions. Trans. Math. Softw. 27 (2001), 377--387. Google ScholarGoogle ScholarDigital LibraryDigital Library
  72. M. Sofroniou and G. Spaletta. 2005. Precise numerical computation. J. Logic Algebr. Program. 64, 1 (2005), 113--134.Google ScholarGoogle ScholarCross RefCross Ref
  73. J. L. Spouge. 1994. Computation of the gamma, digamma, and trigamma functions. SIAM J. Numer. Anal. 31, 3 (1994), 931--944. Google ScholarGoogle ScholarDigital LibraryDigital Library
  74. T. P. Stefański. 2013. Electromagnetic problems requiring high-precision computations. IEEE Antenn. Propagat. Mag. 55, 2 (Apr. 2013), 344--353.Google ScholarGoogle ScholarCross RefCross Ref
  75. N. M. Temme. 1983. The numerical computation of the confluent hypergeometric function U (a, b, z). Numer. Math. 41, 1 (1983), 63--82. Google ScholarGoogle ScholarDigital LibraryDigital Library
  76. The MPFR team. 2016. The MPFR library: Algorithms and proofs. Retrieved from http://www.mpfr.org/algo.html.Google ScholarGoogle Scholar
  77. The PARI group. 2016. PARI/GP. Bordeaux. Retrieved from http://pari.math.u-bordeaux.fr.Google ScholarGoogle Scholar
  78. W. Tucker. 2011. Validated Numerics: A Short Introduction to Rigorous Computations. Princeton University Press, Princeton, NJ. Google ScholarGoogle ScholarDigital LibraryDigital Library
  79. J. van der Hoeven. 1999. Fast evaluation of holonomic functions. Theor. Comput. Sci. 210, 1 (1999), 199--215. Google ScholarGoogle ScholarDigital LibraryDigital Library
  80. J. van der Hoeven. 2001. Fast evaluation of holonomic functions near and in regular singularities. J. Symbol. Comput. 31, 6 (2001), 717--743. Google ScholarGoogle ScholarDigital LibraryDigital Library
  81. J. van der Hoeven. 2007. Efficient accelero-summation of holonomic functions. J. Symbol. Computat. 42, 4 (2007), 389--428. Google ScholarGoogle ScholarDigital LibraryDigital Library
  82. J. van der Hoeven. 2009. Ball Arithmetic. Technical Report. HAL. Retrieved from http://hal.archives-ouvertes.fr/hal-00432152/fr/.Google ScholarGoogle Scholar
  83. A. Vogt. 2007. Computing the Hypergeometric Function 2F1 Using a Recipe of Gosper. Retrieved from http://www.axelvogt.de/axalom/hyp2F1/hypergeometric_2F1_using_a_recipe_of_Gosper.mws.pdf.Google ScholarGoogle Scholar
  84. E. W. Weisstein. 2016. Borel-Regularized Sum. Retrieved from http://mathworld.wolfram.com/Borel-RegularizedSum.html.Google ScholarGoogle Scholar
  85. J. L. Willis. 2012. Acceleration of generalized hypergeometric functions through precise remainder asymptotics. Numer. Algor. 59, 3 (2012), 447--485. Google ScholarGoogle ScholarDigital LibraryDigital Library
  86. Wolfram Research. 2016. Mathematica. Retrieved from http://wolfram.com.Google ScholarGoogle Scholar
  87. Wolfram Research. 2016. The Wolfram Functions Site. Retrieved from http://functions.wolfram.com/.Google ScholarGoogle Scholar
  88. N. Yamamoto and N. Matsuda. {n.d.}. Validated computation of Bessel functions. In Proceedings of the 2005 International Symposium on Nonlinear Theory and its Applications (NOLTA’05).Google ScholarGoogle Scholar
  89. M. Ziegler. 2005. Fast (Multi-)Evaluation of Linearly Recurrent Sequences: Improvements and Applications. (2005). Retreived from http://arxiv.org/abs/cs/0511033.Google ScholarGoogle Scholar

Index Terms

  1. Computing Hypergeometric Functions Rigorously

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in

    Full Access

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    HTML Format

    View this article in HTML Format .

    View HTML Format
    About Cookies On This Site

    We use cookies to ensure that we give you the best experience on our website.

    Learn more

    Got it!