Abstract
We present an efficient implementation of hypergeometric functions in arbitrary-precision interval arithmetic. The functions 0F1, 1F1, 2F1, and 2F0 (or the Kummer U-function) are supported for unrestricted complex parameters and argument, and, by extension, we cover exponential and trigonometric integrals, error functions, Fresnel integrals, incomplete gamma and beta functions, Bessel functions, Airy functions, Legendre functions, Jacobi polynomials, complete elliptic integrals, and other special functions. The output can be used directly for interval computations or to generate provably correct floating-point approximations in any format. Performance is competitive with earlier arbitrary-precision software and sometimes orders of magnitude faster. We also partially cover the generalized hypergeometric function pFq and computation of high-order parameter derivatives.
- M. Abramowitz and I. A. Stegun. 1964. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. Dover, New York, NY.Google Scholar
- D. H. Bailey. 2015. MPFUN2015: A thread-safe arbitrary precision computation package. Manuscript. https://www.davidhbailey.com/dhbpapers/mpfun2015.pdf.Google Scholar
- D. H. Bailey and J. M. Borwein. 2015. High-precision arithmetic in mathematical physics. Mathematics 3, 2 (2015), 337--367.Google Scholar
Cross Ref
- D. H. Bailey, J. M. Borwein, and R. E. Crandall. 2006. Integrals of the Ising class. J. Phys. A: Math. Gen. 39, 40 (2006), 12271--12302.Google Scholar
Cross Ref
- W. Becken and P. Schmelcher. 2000. The analytic continuation of the Gaussian hypergeometric function <sub>2</sub>F<sub>1</sub> (a, b; c; z) for arbitrary parameters. J. Comput. Appl. Math. 126, 1--2 (2000), 449--478. Google Scholar
Digital Library
- D. J. Bernstein. 2008. Fast multiplication and its applications. Algorithmic Number Theory. Lattices, Number Fields, Curves and Cryptography, J.P. Buhler and P. Stevenhagen (Eds.), Vol. 44. http://www.cambridge.org/catalogue/catalogue.asp?isbn=9780521808545.Google Scholar
- R. Bloemen. 2009. Even faster ζ (2n) calculation! Retrieved from https://web.archive.org/web/20141101133659/http://xn--2-umb.com/09/11/even-faster-zeta-calculation.Google Scholar
- A. I. Bogolubsky and S. L. Skorokhodov. 2006. Fast evaluation of the hypergeometric function <sub>p</sub>F<sub>p−1</sub> (a; b; z) at the singular point z = 1 by means of the Hurwitz zeta function ζ (&alpha s) . Program. Comput. Softw. 32, 3 (2006), 145--153. Google Scholar
Digital Library
- A. R. Booker, A. Strömbergsson, and A. Venkatesh. 2006. Effective computation of Maass cusp forms. International Mathematics Research Notices.Google Scholar
- J. M. Borwein, D. M. Bradley, and R. E. Crandall. 2000. Computational strategies for the Riemann zeta function. J. Comput. Appl. Math. 121, 1--2 (2000), 247--296. Google Scholar
Digital Library
- J. M. Borwein and I. J. Zucker. 1992. Fast evaluation of the gamma function for small rational fractions using complete elliptic integrals of the first kind. IMA J. Numer. Anal. 12, 4 (1992), 519--526.Google Scholar
Cross Ref
- P. Borwein. 2000. An efficient algorithm for the Riemann zeta function. Can. Math. Soc. Conf. Proc. 27 (2000), 29--34.Google Scholar
- P. B. Borwein. 1987. Reduced complexity evaluation of hypergeometric functions. J. Approx. Theory 50, 3 (Jul. 1987). Google Scholar
Digital Library
- A. Bostan, P. Gaudry, and É. Schost. 2007. Linear recurrences with polynomial coefficients and application to integer factorization and Cartier-Manin operator. SIAM J. Comput. 36, 6 (2007), 1777--1806. Google Scholar
Digital Library
- R. P. Brent. 1976. The complexity of multiple-precision arithmetic. The Complexity of Computational Problem Solving, R. P. Brent and R. S. Anderssen (Eds.). University of Queensland Press.Google Scholar
- R. P. Brent. 2016. On asymptotic approximations to the log-Gamma and Riemann-Siegel theta functions. arXiv preprint arXiv:1609.03682 (2016).Google Scholar
- R. P. Brent and D. Harvey. 2013. Fast computation of Bernoulli, tangent and secant numbers. In Computational and Analytical Mathematics. Springer, 127--142.Google Scholar
- R. P. Brent and F. Johansson. 2015. A bound for the error term in the Brent-McMillan algorithm. Math. Comp. 84, 295 (Sep. 2015), 2351--2359.Google Scholar
Cross Ref
- R. P. Brent and P. Zimmermann. 2011. Modern Computer Arithmetic. Cambridge University Press, Cambridge, UK. Google Scholar
Digital Library
- S. Chevillard and M. Mezzarobba. 2013. Multiple-precision evaluation of the Airy Ai function with reduced cancellation. In Proceedings of the 21st IEEE Symposium on Computer Arithmetic (ARITH21). 175--182. Google Scholar
Digital Library
- D. V. Chudnovsky and G. V. Chudnovsky. 1988. Approximations and complex multiplication according to Ramanujan. In Ramanujan Revisited. Academic Press, New York, NY, 375--472.Google Scholar
- D. V. Chudnovsky and G. V. Chudnovsky. 1990. Computer algebra in the service of mathematical physics and number theory. Comput. Math. 125 (1990), 109.Google Scholar
- M. Colman, A. Cuyt, and J. Van Deun. 2011. Validated computation of certain hypergeometric functions. ACM Trans. Math. Softw. 38, 2 (2011). Google Scholar
Digital Library
- Z. Du. 2006. Guaranteed Precision for Transcendental and Algebraic Computation Made Easy. Ph.D. Dissertation. New York University, New York, NY. Google Scholar
Digital Library
- Z. Du, M. Eleftheriou, J. E. Moreira, and C. Yap. 2002. Hypergeometric functions in exact geometric computation. Electr. Not. Theor. Comput. Sci. 66, 1 (2002), 53--64.Google Scholar
Cross Ref
- A. Enge, P. Théveny, and P. Zimmermann. 2011. MPC: A library for multiprecision complex arithmetic with exact rounding. Retrieved from http://multiprecision.org/.Google Scholar
- R. Fateman. 2006. {{Maxima} numerical evaluation of 2F1} from RW Gosper. Retrieved from http://www.math.utexas.edu/pipermail/maxima/2006/000126.html.Google Scholar
- S. Fillebrown. 1992. Faster computation of Bernoulli numbers. J. Algor. 13, 3 (1992), 431--445. Google Scholar
Digital Library
- P. Flajolet and I. Vardi. 1996. Zeta function expansions of classical constants. Retrieved from http://algo.inria.fr/flajolet/Publications/FlVa96.pdf.Google Scholar
- R. C. Forrey. 1997. Computing the hypergeometric function. J. Comput. Phys. 137, 1 (1997), 79--100. Google Scholar
Digital Library
- L. Fousse, G. Hanrot, V. Lefèvre, P. Pélissier, and P. Zimmermann. 2007. MPFR: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33, 2 (Jun. 2007), 13:1--13:15. http://mpfr.org. Google Scholar
Digital Library
- D. Gaspard. 2018. Connection formulas between Coulomb wave functions. arXiv preprint arXiv:1804.10976 (2018).Google Scholar
- A. Gil, J. Segura, and N. M. Temme. 2007. Numerical Methods for Special Functions. SIAM, Philadelphia, PA. Google Scholar
Digital Library
- B. Haible and T. Papanikolaou. 1998. Fast multiprecision evaluation of series of rational numbers. In Proceedings of the 3rd International Symposium on Algorithmic Number Theory (ANTS-III), J. P. Buhler (Ed.). Springer, Berlin, 338--350. Google Scholar
Digital Library
- D. E. G. Hare. 1997. Computing the principal branch of log-Gamma. J. Algor. 25, 2 (1997), 221--236. Google Scholar
Digital Library
- U. D. Jentschura and E. Lötstedt. 2012. Numerical calculation of Bessel, Hankel and Airy functions. Comput. Phys. Commun. 183, 3 (2012), 506--519.Google Scholar
Cross Ref
- F. Johansson. 2013. Arb: A C library for ball arithmetic. ACM Commun. Comput. Algebr. 47, 4 (2013), 166--169. Google Scholar
Digital Library
- F. Johansson. 2014a. Evaluating parametric holonomic sequences using rectangular splitting. In Proceedings of the 39th International Symposium on Symbolic and Algebraic Computation (ISSAC’14). ACM, New York, NY, 256--263. Google Scholar
Digital Library
- F. Johansson. 2014b. Fast and Rigorous Computation of Special Functions to High Precision. Ph.D. Dissertation. RISC, Johannes Kepler University, Linz.Google Scholar
- F. Johansson. 2015a. Efficient implementation of elementary functions in the medium-precision range. In Proceedings of the 22nd IEEE Symposium on Computer Arithmetic (ARITH22). 83--89. Google Scholar
Digital Library
- F. Johansson. 2015b. mpmath: A Python Library for Arbitrary-precision Floating-point Arithmetic. Retrieved from http://mpmath.org.Google Scholar
- F. Johansson. 2015c. Rigorous high-precision computation of the Hurwitz zeta function and its derivatives. Numer. Algor. 69, 2 (Jun. 2015), 253--270. Google Scholar
Digital Library
- F. Johansson. 2017. Arb: Efficient arbitrary-precision midpoint-radius interval arithmetic. IEEE Trans. Comput. 66, 8 (2017), 1281--1292.Google Scholar
Digital Library
- F. Johansson and M. Mezzarobba. 2018. Fast and rigorous arbitrary-precision computation of Gauss-Legendre quadrature nodes and weights. SIAM J. Sci. Comput. 40, 6 (2018), C726--C747.Google Scholar
Digital Library
- E. Jones, T. Oliphant, P. Peterson, et al. 2001. SciPy: Open Source Scientific Tools for Python. Retrieved from http://www.scipy.org/.Google Scholar
- E. A. Karatsuba. 1998. Fast evaluation of the Hurwitz zeta function and Dirichlet L-series. Prob. Inf. Transm. 34, 4 (1998).Google Scholar
- M. Kodama. 2011. Algorithm 912: A module for calculating cylindrical functions of complex order and complex argument. ACM Trans. Math. Software 37, 4 (Feb. 2011), 1--25. Google Scholar
Digital Library
- S. Köhler and M. Ziegler. 2008. On the stability of fast polynomial arithmetic. In Proceedings of the 8th Conference on Real Numbers and Computers. Santiago de Compostela, Spain.Google Scholar
- K. Kuhlman. 2015. Unconfined: Command-line Parallel Unconfined Aquifer Test Simulator. Retrieved from https://github.com/klkuhlm/unconfined.Google Scholar
- C. Lanczos. 1964. A precision approximation of the Gamma function. SIAM J. Numer. Anal. 1, 1 (1964), 86--96.Google Scholar
- Maplesoft. 2016. Maple. Retrieved from http://www.maplesoft.com/documentation_center/.Google Scholar
- Maxima authors. 2015. Maxima, a Computer Algebra System. Retrieved from http://maxima.sourceforge.net/.Google Scholar
- M. Mezzarobba. 2010. NumGfun: A package for numerical and analytic computation with D-finite functions. In Proceedings of the International Symposium on Symbolic and Algebraic Computation (ISSAC’10). 139--146. Google Scholar
Digital Library
- M. Mezzarobba. 2011. Autour de l’évaluation numérique des fonctions D-finies. Thèse de doctorat. Ecole polytechnique.Google Scholar
- M. Mezzarobba. 2016. Rigorous Multiple-Precision Evaluation of D-Finite Functions in SageMath. Retrieved from https://arxiv.org/abs/1607.01967.Google Scholar
- M. Mezzarobba and B. Salvy. 2010. Effective bounds for P-recursive sequences. J. Symbol. Comput. 45, 10 (2010), 1075--1096. Google Scholar
Digital Library
- N. Michel and M. V. Stoitsov. 2008. Fast computation of the Gauss hypergeometric function with all its parameters complex with application to the Pöschl--Teller--Ginocchio potential wave functions. Comput. Phys. Commun. 178, 7 (2008), 535--551.Google Scholar
Cross Ref
- K. E. Muller. 2001. Computing the confluent hypergeometric function, M(a, b, x) . Numer. Math. 90, 1 (2001), 179--196.Google Scholar
Cross Ref
- M. Nardin, W. F. Perger, and A. Bhalla. 1992. Numerical evaluation of the confluent hypergeometric function for complex arguments of large magnitudes. J. Comput. Appl. Math 39, 2 (1992), 193--200. Google Scholar
Digital Library
- NIST. 2016. Digital Library of Mathematical Functions. Release 1.0.11 of 2016-06-08. Retrieved from http://dlmf.nist.gov/. Online companion to Olver et al. (2010).Google Scholar
- F. W. J. Olver. 1997. Asymptotics and Special Functions. A K Peters, Wellesley, MA.Google Scholar
- F. W. J. Olver, D. W. Lozier, R. F. Boisvert, and C. W. Clark. 2010. NIST Handbook of Mathematical Functions. Cambridge University Press, New York, NY. Google Scholar
Digital Library
- J. Pearson. 2009. Computation of Hypergeometric Functions. Master’s thesis. University of Oxford.Google Scholar
- J. W. Pearson, S. Olver, and M. A. Porter. 2014. Numerical methods for the computation of the confluent and Gauss hypergeometric functions. arXiv:1407.7786, http://arxiv.org/abs/1407.7786 (2014).Google Scholar
- J. Reignier. 1999. Singularities of ordinary linear differential equations and integrability. In The Painlevé Property. Springer, Berlin, 1--33.Google Scholar
- N. Revol and F. Rouillier. 2005. Motivations for an arbitrary precision interval arithmetic library and the MPFI library. Reliable Comput. 11, 4 (2005), 275--290.Google Scholar
Cross Ref
- Sage developers. 2016. SageMath, the Sage Mathematics Software System (Version 7.2.0). Retrieved from http://www.sagemath.org.Google Scholar
- T. Schmelzer and L. N. Trefethen. 2007. Computing the Gamma function using contour integrals and rational approximations. SIAM J. Numer. Anal. 45, 2 (2007), 558--571. Google Scholar
Digital Library
- S. L. Skorokhodov. 2005. A method for computing the generalized hypergeometric function <sub>p</sub>F<sub>p−1</sub> (a<sub>1</sub>, … , a<sub>p</sub> ; b<sub>1</sub>, … , b<sub>p-1</sub>; 1) in terms of the Riemann zeta function. Comput. Math. Math. Phys. 45, 4 (2005), 574--586.Google Scholar
- D. M. Smith. 1989. Efficient multiple-precision evaluation of elementary functions. Math. Comp. 52, 185 (1989), 131--134.Google Scholar
Cross Ref
- D. M. Smith. 2001. Algorithm: Fortran 90 software for floating-point multiple precision arithmetic, gamma and related functions. Trans. Math. Softw. 27 (2001), 377--387. Google Scholar
Digital Library
- M. Sofroniou and G. Spaletta. 2005. Precise numerical computation. J. Logic Algebr. Program. 64, 1 (2005), 113--134.Google Scholar
Cross Ref
- J. L. Spouge. 1994. Computation of the gamma, digamma, and trigamma functions. SIAM J. Numer. Anal. 31, 3 (1994), 931--944. Google Scholar
Digital Library
- T. P. Stefański. 2013. Electromagnetic problems requiring high-precision computations. IEEE Antenn. Propagat. Mag. 55, 2 (Apr. 2013), 344--353.Google Scholar
Cross Ref
- N. M. Temme. 1983. The numerical computation of the confluent hypergeometric function U (a, b, z). Numer. Math. 41, 1 (1983), 63--82. Google Scholar
Digital Library
- The MPFR team. 2016. The MPFR library: Algorithms and proofs. Retrieved from http://www.mpfr.org/algo.html.Google Scholar
- The PARI group. 2016. PARI/GP. Bordeaux. Retrieved from http://pari.math.u-bordeaux.fr.Google Scholar
- W. Tucker. 2011. Validated Numerics: A Short Introduction to Rigorous Computations. Princeton University Press, Princeton, NJ. Google Scholar
Digital Library
- J. van der Hoeven. 1999. Fast evaluation of holonomic functions. Theor. Comput. Sci. 210, 1 (1999), 199--215. Google Scholar
Digital Library
- J. van der Hoeven. 2001. Fast evaluation of holonomic functions near and in regular singularities. J. Symbol. Comput. 31, 6 (2001), 717--743. Google Scholar
Digital Library
- J. van der Hoeven. 2007. Efficient accelero-summation of holonomic functions. J. Symbol. Computat. 42, 4 (2007), 389--428. Google Scholar
Digital Library
- J. van der Hoeven. 2009. Ball Arithmetic. Technical Report. HAL. Retrieved from http://hal.archives-ouvertes.fr/hal-00432152/fr/.Google Scholar
- A. Vogt. 2007. Computing the Hypergeometric Function 2F1 Using a Recipe of Gosper. Retrieved from http://www.axelvogt.de/axalom/hyp2F1/hypergeometric_2F1_using_a_recipe_of_Gosper.mws.pdf.Google Scholar
- E. W. Weisstein. 2016. Borel-Regularized Sum. Retrieved from http://mathworld.wolfram.com/Borel-RegularizedSum.html.Google Scholar
- J. L. Willis. 2012. Acceleration of generalized hypergeometric functions through precise remainder asymptotics. Numer. Algor. 59, 3 (2012), 447--485. Google Scholar
Digital Library
- Wolfram Research. 2016. Mathematica. Retrieved from http://wolfram.com.Google Scholar
- Wolfram Research. 2016. The Wolfram Functions Site. Retrieved from http://functions.wolfram.com/.Google Scholar
- N. Yamamoto and N. Matsuda. {n.d.}. Validated computation of Bessel functions. In Proceedings of the 2005 International Symposium on Nonlinear Theory and its Applications (NOLTA’05).Google Scholar
- M. Ziegler. 2005. Fast (Multi-)Evaluation of Linearly Recurrent Sequences: Improvements and Applications. (2005). Retreived from http://arxiv.org/abs/cs/0511033.Google Scholar
Index Terms
Computing Hypergeometric Functions Rigorously
Recommendations
Ultraspherical Gauss--Kronrod Quadrature Is Not Possible for $\lambda > 3$
With the help of a new representation of the Stieltjes polynomial it is shown by using Bessel functions that the Stieltjes polynomial with respect to the ultraspherical weight function with parameter $\lambda$ has only few real zeros for $\lambda > 3$ ...
Asymptotic properties of Laguerre---Sobolev type orthogonal polynomials
In this contribution we consider the asymptotic behavior of sequences of monic polynomials orthogonal with respect to a Sobolev-type inner product $$ \left\langle p,q\right\rangle _{S}=\int_{0}^{\infty }p(x)q(x)x^{\alpha }e^{-x}dx+Np^{\prime }(a)q^{\...
New inequalities from classical Sturm theorems
Inequalities satisfied by the zeros of the solutions of second-order hypergeometric equations are derived through a systematic use of Liouville transformations together with the application of classical Sturm theorems. This systematic study allows us to ...






Comments