10.1145/335305.335358acmconferencesArticle/Chapter ViewAbstractPublication PagesstocConference Proceedings
Article

The program-size complexity of self-assembled squares (extended abstract)

Published:01 May 2000
First page image

References

  1. Adleman, L. M. (1994). Molecular computation of solutions to combinatorial problems. Science, 266:1021-1024. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Adleman, L. M. (unpublished manuscript, 2000). Toward a mathematical theory of self-assembly.Google ScholarGoogle Scholar
  3. Bennett, C. H. (1982). The thermodynamics of computation- a review. International Journal of Theoretical Physics, 21(12):905-940.Google ScholarGoogle ScholarCross RefCross Ref
  4. Berger, R. (1966). The undecidability of the domino problem. Memiors of the AMS, 66:1-72.Google ScholarGoogle Scholar
  5. Bowden, N., Choi, I., Gryzbowski, B., and Whitesides, G. (1999). Mesoscale self-assembly of hexagonal plates using lateral capillary forces: Synthesis using the "capillary bond". Journal of the American Chemical Society, 121:5373-5391.Google ScholarGoogle ScholarCross RefCross Ref
  6. Bowden, N., Terfort, A., Carbeck, j., and Whitesides, G. (1997). Self-assembly of mesoscaJe objects into ordered two-dimensional arrays. Science, 276:233-235.Google ScholarGoogle ScholarCross RefCross Ref
  7. Hjelmfelt, A. and Ross, J. (1995). Implementation of logic functions and computations by chemical kinetics. Physica D, 84:180-193. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Hosokawa, K., Shimoyama, I., and Miura, H. (1996). Two-dimensional micro-self-assembly using the surface tension of water. Sensors and Actuators A, 57:117-125.Google ScholarGoogle ScholarCross RefCross Ref
  9. Kurtz, S. A., Mahaney, S. R., Royer, J. S., and Simon, J. (1997). Biological computing. In Hemaspaandra, L. A. and Selman, A. L., editors, Complexity Theory Retrospective II, pages 179-195. Springer. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Li, M. and Vitanyi, P. (1997). An Introduction to Kolmogorov Complexity and Its Applications (Second Edition). Springer Verlag, New York. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Mackay, A. (1995). Generalised crystallography, journal of Molecular Structure (Theochem), 336:293-303.Google ScholarGoogle Scholar
  12. Magnasco, M. O. (1997). Chemical kinetics is Turing universal. Physical Review Letters, 78(6):1190-1193.Google ScholarGoogle ScholarCross RefCross Ref
  13. Markov, I. V. (1995). Crystal Growth for Beginners: fundamentals of nucleation, crystal growth, and epitaxy. World Scientific, Singapore.Google ScholarGoogle Scholar
  14. Ptashne, M. (1992). A Genetic Switch, 2nd ed. Cell Press & Blackwell.Google ScholarGoogle Scholar
  15. Radin, C. (1991). Global order from local sources. Bulletin of the AMS, 25(2):335-364.Google ScholarGoogle ScholarCross RefCross Ref
  16. Rado, T. (1962). Oa non-computable functions. Bell System Technical Yvurnal, 41(3):877-884.Google ScholarGoogle ScholarCross RefCross Ref
  17. Robinson, R. M. (1971). Undecidability and nonperiodicity of tilings of the plane. Inventiones Math., 12:177-209.Google ScholarGoogle ScholarCross RefCross Ref
  18. Rothemund, P. W. K. (2000). Using lateral capillary forces to compute by self-assembly. Proceedings of the National Academy of Sciences, 97:984-989.Google ScholarGoogle ScholarCross RefCross Ref
  19. Schectman, D., Blech, I., Gratias, D., and Cahn, J. (1984). Metallic phase with long-range orientational order and no translational symmetry. Phys. Rev. Lett., 53:1951-1953.Google ScholarGoogle ScholarCross RefCross Ref
  20. Seeman, N. C. (1998). DNA nanotechnology: novel DNA constructions. Annual Review of Biophysics and Biomolecular Structure, 27:225-248.Google ScholarGoogle ScholarCross RefCross Ref
  21. SenechaJ, M. (1995). Quasicrystals and geometry. Cambridge University Press, Cambridge.Google ScholarGoogle Scholar
  22. Wang, H. (1961). Proving theorems by pattern recognition. Ii. Bell System Technical Journal, 40:1-42.Google ScholarGoogle ScholarCross RefCross Ref
  23. Wang, H. (1963). Dominoes and the AEA case of the decision problem. In Fox, J., editor, Mathematical Theory of Automata, pages 23-55, Brooklyn, New York. Polytechnic Press.Google ScholarGoogle Scholar
  24. Winfree, E. (1996). On the computational power of DNA annealing and ligation. In Lipton, R. J. and Baum, E. B., editors, DNA Based Computers: DIMAC$ Workshop, April J, 1995, volume 27, pages 199-221, Providence, RI. American Mathematical Society.Google ScholarGoogle Scholar
  25. Winfree, E. (preliminary, 1998). Simulations of computing by self-assembly. In Karl, L., Rubin, H., and Wood, D. H., editors, Proceedings of the 4th DiMAC$ Meeting on DNA Based Computers, held at the University of Pennsylvania, June 16-19, 1998.Google ScholarGoogle Scholar
  26. Winfree, E., Liu, F., Wenzler, L. A., and Seeman, N. C. (1998a). Design and self-assembly of two-dimensional DNA crystals. Nature, 394:539-544.Google ScholarGoogle ScholarCross RefCross Ref
  27. Winfree, E., Yang, X., and Seeman, N. C. (1998b). Universal computation via self-assembly of DNA: Some theory and experiments. In Landweber, L. F. and Baum, E. B., editors, DNA Based Computers H: DIMACS Workshop, June 10-12, 1996, volume 44, Providence, Ri. American Mathematical Society.Google ScholarGoogle Scholar

Index Terms

  1. The program-size complexity of self-assembled squares (extended abstract)

              Comments

              Login options

              Check if you have access through your login credentials or your institution to get full access on this article.

              Sign in

              PDF Format

              View or Download as a PDF file.

              PDF

              eReader

              View online with eReader.

              eReader
              About Cookies On This Site

              We use cookies to ensure that we give you the best experience on our website.

              Learn more

              Got it!