skip to main content
10.1145/3384419.3430777acmconferencesArticle/Chapter ViewAbstractPublication PagessensysConference Proceedingsconference-collections
research-article

LiTag: localization and posture estimation with passive visible light tags

Published:16 November 2020Publication History

ABSTRACT

The development of Internet of Things calls for ubiquitous and low-cost localization and posture estimation. We present LiTag, a visible light based localization and posture estimation solution with COTS cameras. The core of LiTag is based on the design of a chip-less and battery-less optical tag which can show different color patterns from different observation directions. After capturing a photo containing the tag, LiTag can calculate the tag position and posture by combining the color pattern and the geometry relation between the camera image plane and the real world. Unlike existing marker-based visible localization and posture estimation approaches, LiTag can work with a single camera without calibration, which significantly reduces the calibration overhead and deployment costs. We implement LiTag and evaluate its performance extensively. Results show that LiTag can provide the tag position with a median error of 1.6 cm in the 2D plane, a median error of 12 cm in the 3D space, and posture estimation with a median error of 1°. We believe that LiTag has a high potential to provide a low-cost and easy-to-use solution for ubiquitous localization and posture estimation with existing widely deployed cameras.

References

  1. Zhice Yang, Zeyu Wang, Jiansong Zhang, Chenyu Huang, and Qian Zhang. Wearables can afford: Light-weight indoor positioning with visible light. In Proceedings of ACM MobiSys, May 18--22, 2015, Florence, Italy.Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Ye-Sheng Kuo, Pat Pannuto, Ko-Jen Hsiao, and Prabal Dutta. Luxapose: Indoor positioning with mobile phones and visible light. In Proceedings of ACM MobiCom, Sept 7--11, 2014, Maui, Hawaii.Google ScholarGoogle Scholar
  3. Song Liu and Tian He. Smartlight: Light-weight 3d indoor localization using a single led lamp. In Proceedings of ACM SenSys, Nov 5--8, 2017, Delft, The Netherlands.Google ScholarGoogle Scholar
  4. Yu-Lin Wei, Chang-Jung Huang, Hsin-Mu Tsai, and Kate Ching-Ju Lin. Celli: Indoor positioning using polarized sweeping light beams. In Proceedings of ACM MobiSys, June 19--23, 2017, Niagara Falls, NY, USA.Google ScholarGoogle Scholar
  5. Chi Zhang and Xinyu Zhang. Pulsar: Towards ubiquitous visible light localization. In Proceedings of ACM MobiCom, Oct 16--20, 2017, Snowbird, Utah, USA.Google ScholarGoogle Scholar
  6. Chi Zhang and Xinyu Zhang. Litell: robust indoor localization using unmodified light fixtures. In Proceedings of ACM MobiCom, Oct 3--7, 2016, New York, USA.Google ScholarGoogle Scholar
  7. Shilin Zhu and Xinyu Zhang. Enabling high-precision visible light localization in today's buildings. In Proceedings of ACM MobiSys, June 19--23, 2017, Niagara Falls, NY, USA.Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Lingkun Li, Pengjin Xie, and Jiliang Wang. Rainbowlight: Towards low cost ambient light positioning with mobile phones. In Proceedings of ACM MobiCom, Oct 29- Nov 2, 2018, New Delhi, India.Google ScholarGoogle Scholar
  9. Changchang Wu. P3. 5p: Pose estimation with unknown focal length. In Proceedings of IEEE CVPR, June 8--10, 2015, Boston, Massachusetts.Google ScholarGoogle Scholar
  10. Yinqiang Zheng, Yubin Kuang, Shigeki Sugimoto, Kalle Astrom, and Masatoshi Okutomi. Revisiting the pnp problem: A fast, general and optimal solution. In Proceedings of the IEEE ICCV, Dec 3--6, 2013, Darling Harbour, Sydney.Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Zuzana Kukelova, Martin Bujnak, and Tomas Pajdla. Real-time solution to the absolute pose problem with unknown radial distortion and focal length. In Proceedings of IEEE ICCV, Dec 3--6, 2013, Darling Harbour, Sydney.Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Yinqiang Zheng, Shigeki Sugimoto, Imari Sato, and Masatoshi Okutomi. A general and simple method for camera pose and focal length determination. In Proceedings of IEEE CVPR, June 24--27, 2014, Columbus, Ohio.Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Bill Triggs, Philip F McLauchlan, Richard I Hartley, and Andrew W Fitzgibbon. Bundle adjustment---a modern synthesis. In Proceedings of Springer International workshop on vision algorithms, September 21--22, 1999 Corfu, Greece.Google ScholarGoogle Scholar
  14. Stephen Boyd and Lieven Vandenberghe. Convex optimization. Cambridge university press, 2004.Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Klas Josephson and Martin Byrod. Pose estimation with radial distortion and unknown focal length. In Proceedings of IEEE CVPR, June 20--25, 2009, Miami, Florida.Google ScholarGoogle ScholarCross RefCross Ref
  16. Mongi A. Abidi and T Chandra. A new efficient and direct solution for pose estimation using quadrangular targets: Algorithm and evaluation. IEEE transactions on pattern analysis and machine intelligence, 17(5):534--538, 1995.Google ScholarGoogle Scholar
  17. Yubin Kuang and Kalle Astrom. Pose estimation with unknown focal length using points, directions and lines. In Proceedings of IEEE ICCV, Dec 3--6, 2013, Darling Harbour, Sydney.Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Microscopy. Principles of birefringence. https://www.microscopyu.com/techniques/polarized-light/principles-of-birefringence.Google ScholarGoogle Scholar
  19. wikipedia. Retroflector. https://en.wikipedia.org/wiki/Retroreflector.Google ScholarGoogle Scholar
  20. OptiTrack. Optitrack camera. https://optitrack.com/systems/#movement.Google ScholarGoogle Scholar
  21. Zhengxiong Li, Baicheng Chen, Zhuolin Yang, Huining Li, Chenhan Xu, Xingyu Chen, Kun Wang, and Wenyao Xu. Ferrotag: A paper-based mmwave-scannable tagging infrastructure. In Proceedings of ACM SenSys, Nov 10--13, 2019, New York, NY, USA.Google ScholarGoogle Scholar
  22. Adnan Ansar and Konstantinos Daniilidis. Linear pose estimation from points or lines. IEEE Transactions on Pattern Analysis and Machine Intelligence, 25(5):578--589, 2003.Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Michael Vynnycky and Kamen Kanev. Mathematical analysis of the multisolution phenomenon in the p3p problem. Springer Journal of Mathematical Imaging and Vision, 51(2):326--337, 2015.Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Fakhr-eddine Ababsa and Malik Mallem. Robust camera pose estimation using 2d fiducials tracking for real-time augmented reality systems. In Proceedings of ACM SIGGRAPH, August 8--12, 2004, Los Angeles, California, USA.Google ScholarGoogle Scholar
  25. Filippo Bergamasco, Andrea Albarelli, Luca Cosmo, Emanuele Rodola, and Andrea Torsello. An accurate and robust artificial marker based on cyclic codes. IEEE Transactions on Pattern Analysis and Machine Intelligence, 38(12):2359--2373, 2016.Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Leonid Naimark and Eric Foxlin. Circular data matrix fiducial system and robust image processing for a wearable vision-inertial self-tracker. In Proceedings of IEEE ISMAR, Sept 30-Oct 1, 2002, Darmstadt, Germany.Google ScholarGoogle ScholarCross RefCross Ref
  27. Joseph DeGol, Timothy Bretl, and Derek Hoiem. Chromatag: a colored marker and fast detection algorithm. In Proceedings of IEEE ICCV, Oct 22--29, 2017, Venice, Italy.Google ScholarGoogle ScholarCross RefCross Ref
  28. Mark Fiala. Designing highly reliable fiducial markers. IEEE Transactions on Pattern analysis and machine intelligence, 32(7):1317--1324, 2009.Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Rafael Muñoz-Salinas, Manuel J Marín-Jimenez, Enrique Yeguas-Bolivar, and Rafael Medina-Carnicer. Mapping and localization from planar markers. Elsevier Pattern Recognition, 73:158--171, 2018.Google ScholarGoogle ScholarCross RefCross Ref
  30. Andrej Babinec, Ladislav Jurišica, Peter HubinskᏳ, and František Duchoň. Visual localization of mobile robot using artificial markers. Elsevier Procedia Engineering, 96:1--9, 2014.Google ScholarGoogle ScholarCross RefCross Ref
  31. Yue Wu, Purui Wang, Kenuo Xu, Lilei Feng, and Chenren Xu. Turboboosting visible light backscatter communication. In Proceedings of ACM SIGCOMM, August 10--14, 2020, New York City, USA.Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Xieyang Xu, Yang Shen, Junrui Yang, Chenren Xu, Guobin Shen, Guojun Chen, and Yunzhe Ni. Passivevlc: Enabling practical visible light backscatter communication for battery-free iot applications. In Proceedings of ACM MobiCom, Oct 16--20, 2017, Snowbird, Utah, USA.Google ScholarGoogle Scholar
  33. Julian Randall, Oliver Amft, Jürgen Bohn, and Martin Burri. Luxtrace: indoor positioning using building illumination. Springer Personal and ubiquitous computing, 11(6):417--428, 2007.Google ScholarGoogle Scholar
  34. Nishkam Ravi and Liviu Iftode. Fiatlux: Fingerprinting rooms using light intensity. 2007.Google ScholarGoogle Scholar
  35. Jean Armstrong, Y Sekercioglu, and Adrian Neild. Visible light positioning: a roadmap for international standardization. IEEE Communications Magazine, 51(12):68--73, 2013.Google ScholarGoogle Scholar
  36. Bo Xie, Kongyang Chen, Guang Tan, Mingming Lu, Yunhuai Liu, Jie Wu, and Tian He. Lips: A light intensity-based positioning system for indoor environments. ACM Transactions on Sensor Networks, 12(4):1--27, 2016.Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Bo Xie, Guang Tan, and Tian He. Spinlight: A high accuracy and robust light positioning system for indoor applications. In Proceedings of ACM SenSys, Nov 1--4, 2015, Seoul, South Korea.Google ScholarGoogle Scholar
  38. Radu Stoleru, Tian He, John A. Stankovic, and David Luebke. A high-accuracy, low-cost localization system for wireless sensor networks. In Proceedings of ACM SenSys, Nov 2--4, 2005, San Diego, USA.Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Zhao Tian, Yu-Lin Wei, Wei-Nin Chang, Xi Xiong, Changxi Zheng, Hsin-Mu Tsai, Kate Ching-Ju Lin, and Xia Zhou. Augmenting indoor inertial tracking with polarized light. In Proceedings of ACM MobiSys, June 10--15, 2018, Munich, Germany.Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Masaki Yoshino, Shinichiro Haruyama, and Masao Nakagawa. High-accuracy positioning system using visible led lights and image sensor. In Proceedings of IEEE Radio and Wireless Symposium, Jan 22--24, 2008, Orlando, FL, USA., 2008.Google ScholarGoogle ScholarCross RefCross Ref
  41. S-H Yang, E-M Jeong, D-R Kim, H-S Kim, Y-H Son, and S-K Han. Indoor three-dimensional location estimation based on led visible light communication. IET Electronics Letters, 49(1):54--56, 2013.Google ScholarGoogle ScholarCross RefCross Ref
  42. Ruipeng Gao, Yang Tian, Fan Ye, Guojie Luo, Kaigui Bian, Yizhou Wang, Tao Wang, and Xiaoming Li. Sextant: Towards ubiquitous indoor localization service by photo-taking of the environment. IEEE Transactions on Mobile Computing, 15(2):460--474, 2015.Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. LiTag: localization and posture estimation with passive visible light tags

          Recommendations

          Comments

          Login options

          Check if you have access through your login credentials or your institution to get full access on this article.

          Sign in
          • Published in

            cover image ACM Conferences
            SenSys '20: Proceedings of the 18th Conference on Embedded Networked Sensor Systems
            November 2020
            852 pages
            ISBN:9781450375900
            DOI:10.1145/3384419

            Copyright © 2020 ACM

            Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

            Publisher

            Association for Computing Machinery

            New York, NY, United States

            Publication History

            • Published: 16 November 2020

            Permissions

            Request permissions about this article.

            Request Permissions

            Check for updates

            Qualifiers

            • research-article

            Acceptance Rates

            Overall Acceptance Rate174of867submissions,20%

          PDF Format

          View or Download as a PDF file.

          PDF

          eReader

          View online with eReader.

          eReader