skip to main content
research-article

Methods for Generating Typologies of Non/use

Published:29 May 2020Publication History
Skip Abstract Section

Abstract

Prior studies of technology non-use demonstrate the need for approaches that go beyond a simple binary distinction between users and non-users. This paper proposes a set of two different methods by which researchers can identify types of non/use relevant to the particular sociotechnical settings they are studying. These methods are demonstrated by applying them to survey data about Facebook non/use. The results demonstrate that the different methods proposed here identify fairly comparable types of non/use. They also illustrate how the two methods make different trade offs between the granularity of the resulting typology and the total sample size. The paper also demonstrates how the different typologies resulting from these methods can be used in predictive modeling, allowing for the two methods to corroborate or disconfirm results from one another. The discussion considers implications and applications of these methods, both for research on technology non/use and for studying social computing more broadly.

References

  1. Alessandro Acquisti and Ralph Gross. 2006. Imagined Communities : Awareness, Information Sharing, and Privacy on the Facebook. In Proceedings of the Privacy Enhancing Technology Symposium. Springer, Cambridge, England, 36--58.Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Cecilie Schou Andreassen, Torbjørn Torsheim, Geir Scott Brunborg, and Ståle Pallesen. 2012. Development of a Facebook Addiction Scale. Psychological Reports, Vol. 110, 2 (April 2012), 501--517. https://doi.org/10.2466/02.09.18.PR0.110.2.501--517Google ScholarGoogle ScholarCross RefCross Ref
  3. Anne Archambault and Jonathan Grudin. 2012. A Longitudinal Study of Facebook, LinkedIn, & Twitter Use. In Proceedings of the ACM Conference on Human Factors in Computing Systems (CHI ). Austin, TX, 2741--2750. https://doi.org/10.1145/2207676.2208671Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Eric Baumer, Mark Sueyoshi, and Bill Tomlinson. 2008. Exploring the Role of the Reader in the Activity of Blogging. In Proceedings of the ACM Conference on Human Factors in Computing Systems (CHI ). ACM, Florence, Italy, 1111--1120. https://doi.org/10.1145/1357054.1357228Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Eric P. S. Baumer. 2018. Socioeconomic Inequalities in the Non /Use of Facebook. In Proceedings of the ACM Conference on Human Factors in Computing Systems (CHI ). ACM, Montréal, QC, 616:1--616:14. https://doi.org/10.1145/3173574.3174190Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Eric P. S. Baumer, Phil Adams, Vera D. Khovanskaya, Tony C. Liao, Madeline E. Smith, Victoria Schwanda Sosik, and Kaiton Williams. 2013. Limiting, Leaving, and (Re )Lapsing : An Exploration of Facebook Non -Use Practices and Experiences. In Proceedings of the ACM Conference on Human Factors in Computing Systems (CHI ). ACM, Paris, 3257--3266. https://doi.org/10.1145/2470654.2466446Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Eric P. S. Baumer, Morgan G. Ames, Jenna Burrell, Jed R. Brubaker, and Paul Dourish. 2015a. Why Study Technology Non -Use? First Monday, Vol. 20, 11 (2015).Google ScholarGoogle ScholarCross RefCross Ref
  8. Eric P. S. Baumer and Jed R. Brubaker. 2017. Post-Userism. In Proceedings of the ACM Conference on Human Factors in Computing Systems (CHI ). ACM, Denver, CO, 6291--6303. https://doi.org/10.1145/3025453.3025740Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Eric P. S. Baumer, Jenna Burrell, Morgan G. Ames, Jed R. Brubaker, and Paul Dourish. 2015b. On the Importance and Implications of Studying Technology Non -Use. interactions, Vol. 22, 2 (2015), 52--56. https://doi.org/10.1145/2723667Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Eric P. S. Baumer, Shion Guha, Emily Quan, David Mimno, and Geri K. Gay. 2015c. Missing Photos, Suffering Withdrawal, or Finding Freedom How Experiences of Social Media Non -Use Influence the Likelihood of Reversion. Social MediaGoogle ScholarGoogle Scholar
  11. Society, Vol. 1, 2 (2015). https://doi.org/10.1177/2056305115614851Google ScholarGoogle Scholar
  12. Eric P. S. Baumer, Shion Guha, Patrick Skeba, and Geraldine Gay. 2019. All Users are (Not) Created Equal: Predictors Vary for Different Forms of Facebook Non/use. Proceedings of the ACM on Human-Computer Interaction, Vol. 3, CSCW (2019), 1--28.Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Eric P. S. Baumer, David Mimno, Shion Guha, Emily Quan, and Geri K Gay. 2017a. Comparing grounded theory and topic modeling: Extreme divergence or unlikely convergence? Journal of the Association for Information Science and Technology, Vol. 68, 6 (2017), 1397--1410.Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Eric P. S. Baumer, Rui Sun, and Peter Schaedler. 2018. Departing and Returning : Sense of Agency As an Organizing Concept for Understanding Social Media Non /Use Transitions. Proc. ACM Hum.-Comput. Interact., Vol. 2, CSCW (Nov. 2018), 23:1--23:19. https://doi.org/10.1145/3274292Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Eric P. S. Baumer, Xiaotong Xu, Christine Chu, Shion Guha, and Geri K. Gay. 2017b. When Subjects Interpret the Data : Social Media Non -Use as a Case for Adapting the Delphi Method to CSCW. In Proceedings of the ACM Conference on Computer Supported Cooperative Work & Social Computing (CSCW ) (CSCW '17). ACM, Portland, OR, 1527--1543. https://doi.org/10.1145/2998181.2998182Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. V. Benet-Martinez and O. P. John. 1998. Los Cinco Grandes across cultures and ethnic groups: Multitrait multimethod analyses of the Big Five in Spanish and English. Journal of Personality and Social Psychology1, Vol. 75 (1998), 729--750.Google ScholarGoogle ScholarCross RefCross Ref
  17. Michael S Bernstein, Mark S Ackerman, Ed H Chi, and Robert C Miller. 2011. The trouble with social computing systems research. In CHI'11 Extended Abstracts on Human Factors in Computing Systems. ACM, 389--398.Google ScholarGoogle Scholar
  18. Geoffrey C. Bowker and Susan Leigh Star. 1999. Sorting Things Out : Classification and Its Consequences .MIT Press .Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. George EP Box and R Daniel Meyer. 1986. An analysis for unreplicated fractional factorials. Technometrics, Vol. 28, 1 (1986), 11--18.Google ScholarGoogle ScholarCross RefCross Ref
  20. Danah Boyd. 2006. Friends, Friendsters, and Top 8: Writing Community into Being on Social Network Sites. First Monday, Vol. 11, 12 (Dec. 2006). https://doi.org/10.5210/fm.v11i12.1418Google ScholarGoogle ScholarCross RefCross Ref
  21. danah boyd. 2014. It's Complicated : The Social Lives of Networked Teens 1 edition ed.). Yale University Press, New Haven.Google ScholarGoogle Scholar
  22. Petter Bae Brandtzæg. 2010. Towards a unified Media-User Typology (MUT): A meta-analysis and review of the research literature on media-user typologies. Computers in Human Behavior, Vol. 26, 5 (2010), 940--956.Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Petter Bae Brandtzaeg and Jan Heim. 2011. A typology of social networking sites users. International Journal of Web Based Communities, Vol. 7, 1 (2011), 28--51.Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Jed R. Brubaker, Mike Ananny, and Kate Crawford. 2016. Departing Glances: A Sociotechnical Account of 'leaving' Grindr. New Media & Society, Vol. 18, 3 (2016), 373--390. https://doi.org/10.1177/1461444814542311Google ScholarGoogle ScholarCross RefCross Ref
  25. Jed R. Brubaker and Vanessa Callison-Burch. 2016. Legacy Contact : Designing and Implementing Post -Mortem Stewardship at Facebook. In Proc CHI. ACM Press, 2908--2919. https://doi.org/10.1145/2858036.2858254Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Tom Buchanan, Carina Paine, Adam N. Joinson, and Ulf-Dietrich Reips. 2007. Development of Measures of Online Privacy Concern and Protection for Use on the Internet. Journal of the American Society for Information Science and Technology, Vol. 58, 2 (2007), 157--165. https://doi.org/10.1002/asi.20459Google ScholarGoogle ScholarCross RefCross Ref
  27. Paul Cairns. 2007. HCI... not as it should be: inferential statistics in HCI research. In Proceedings of the 21st British HCI Group Annual Conference on People and Computers: HCI... but not as we know it-Volume 1. British Computer Society, 195--201.Google ScholarGoogle ScholarCross RefCross Ref
  28. Junxiang Chen. 2018. Interpretable Clustering Methods. Ph.D. Dissertation. Northeastern University.Google ScholarGoogle Scholar
  29. Yushi Chen, Zhouhan Lin, Xing Zhao, Gang Wang, and Yanfeng Gu. 2014. Deep learning-based classification of hyperspectral data. IEEE Journal of Selected topics in applied earth observations and remote sensing, Vol. 7, 6 (2014), 2094--2107.Google ScholarGoogle ScholarCross RefCross Ref
  30. Paul T. Costa and Robert R. McCrae. 1992. Revised NEO Personality Inventory (NEO -PIR ) and NEO Five Factor Inventory (NEO -FFI ) Professional Manual .Psychological Assessment Resources, Odessa, FL.Google ScholarGoogle Scholar
  31. Jenny Davis. 2012. The Problem with Internet Addiction.Google ScholarGoogle Scholar
  32. Thomas G Dietterich. 2000. Ensemble methods in machine learning. In International workshop on multiple classifier systems. Springer, 1--15.Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Finale Doshi-Velez and Been Kim. 2017. Towards a rigorous science of interpretable machine learning. arXiv preprint arXiv:1702.08608 (2017).Google ScholarGoogle Scholar
  34. Maeve Duggan, Nicole B. Ellison, Cliff Lampe, Amanda Lenhart, and Mary Madden. 2015. Pew Social Meida Report 2015. Technical Report January. Pew Research Center, Washington, D.C.Google ScholarGoogle Scholar
  35. Susan Dumais, Robin Jeffries, Daniel M. Russell, Diane Tang, and Jaime Teevan. 2014. Understanding User Behavior Through Log Data and Analysis. In Ways of Knowing in HCI, Judith S. Olson and Wendy A. Kellogg (Eds.). Springer New York, New York, NY, 349--372. https://doi.org/10.1007/978--1--4939-0378--8_14Google ScholarGoogle Scholar
  36. Allen Louis Edwards. 1983. Techniques of Attitude Scale Construction .Prentice-Hall, Englewood Cliffs, NJ.Google ScholarGoogle Scholar
  37. Nicole B. Ellison, Charles Steinfield, and Cliff Lampe. 2007. The Benefits of Facebook "Friends :" Social Capital and College Students' Use of Online Social Network Sites. Journal of Computer-Mediated Communication, Vol. 12, 4 (July 2007), 1143--1168. https://doi.org/10.1111/j.1083--6101.2007.00367.xGoogle ScholarGoogle ScholarCross RefCross Ref
  38. Chris Elsden, Arthi Manohar, Jo Briggs, Mike Harding, Chris Speed, and John Vines. 2018. Making sense of blockchain applications: A typology for HCI. In Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems. ACM, 458.Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Facebook. [n. d.]. How Do I Deactivate My Account? https://www.facebook.com/help/214376678584711.Google ScholarGoogle Scholar
  40. Gloria Fraser. 2018. Evaluating inclusive gender identity measures for use in quantitative psychological research. Psychology & Sexuality, Vol. 9, 4 (2018), 343--357.Google ScholarGoogle ScholarCross RefCross Ref
  41. Christian Fuchs and Marianna Obrist. 2010. HCI and society: towards a typology of universal design principles. Intl. Journal of Human-Computer Interaction, Vol. 26, 6 (2010), 638--656.Google ScholarGoogle ScholarCross RefCross Ref
  42. Mike Furr. 2011. Scale Construction and Psychometrics for Social and Personality Psychology .SAGE Publications Ltd, London.Google ScholarGoogle Scholar
  43. Radhika Garg. 2019. An analysis of (non-) use practices and decisions of internet of things. In IFIP Conference on Human-Computer Interaction. Springer, 3--24.Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. Radhika Garg and Subhasree Sengupta. 2019. " When you can do it, why can't I?": Racial and Socioeconomic Differences in Family Technology Use and Non-Use. Proceedings of the ACM on Human-Computer Interaction, Vol. 3, CSCW (2019), 1--22.Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. Lance Gentry, Roger J Calantone, and Shaojie Anna Cui. 2006. The forecasting classification grid: a typology for method selection. Journal of Global Business Management, Vol. 2, 1 (2006), 48--60.Google ScholarGoogle Scholar
  46. Ilana Gershon. 2011. Un-Friend My Heart : Facebook, Promiscuity, and Heartbreak in a Neoliberal Age. Anthropological Quarterly, Vol. 84, 4 (Nov. 2011), 865--894. https://doi.org/10.1353/anq.2011.0048Google ScholarGoogle ScholarCross RefCross Ref
  47. Samuel D. Gosling, Peter J. Rentfrow, and William B. Swann Jr. 2003. A Very Brief Measure of the Big -Five Personality Domains. Journal of Research in Personality, Vol. 37, 6 (Dec. 2003), 504--528. https://doi.org/10.1016/S0092--6566(03)00046--1Google ScholarGoogle ScholarCross RefCross Ref
  48. Sukeshini A Grandhi, Linda Plotnick, and Starr Roxanne Hiltz. 2019. Do I Stay or Do I Go? Motivations and Decision Making in Social Media Non-use and Reversion. Proceedings of the ACM on Human-Computer Interaction, Vol. 3, GROUP (2019), 1--27.Google ScholarGoogle ScholarDigital LibraryDigital Library
  49. Jon E. Grant. 2008. Impulse Control Disorders : A Clinician 's Guide to Understanding and Treating Behavioral Addictions .W. W. Norton & Company, Inc., New York.Google ScholarGoogle Scholar
  50. Jon E. Grant, Marc N. Potenza, Aviv Weinstein, and David A. Gorelick. 2010. Introduction to Behavioral Addictions. The American Journal of Drug and Alcohol Abuse, Vol. 36, 5 (Aug. 2010), 233--241. https://doi.org/10.3109/00952990.2010.491884Google ScholarGoogle ScholarCross RefCross Ref
  51. Mark Griffiths. 2005. A "components' model of addiction within a biopsychosocial framework. Journal of Substance Use, Vol. 10, 4 (jan 2005), 191--197. https://doi.org/10.1080/14659890500114359Google ScholarGoogle ScholarCross RefCross Ref
  52. Mark D. Griffiths. 2013. Social Networking Addiction : Emerging Themes and Issues. Journal of Addiction Research & Therapy, Vol. 4, 5 (2013). https://doi.org/10.4172/2155--6105.1000e118Google ScholarGoogle ScholarCross RefCross Ref
  53. Mark D. Griffiths, Daria J. Kuss, and Zsolt Demetrovics. 2014. Social Networking Addiction. In Behavioral Addictions. Elsevier, 119--141.Google ScholarGoogle Scholar
  54. Shion Guha, Eric P. S. Baumer, and Geri K. Gay. 2018. Regrets, I 've Had a Few : When Regretful Experiences Do (and Don 't) Compel Users to Leave Facebook. In Proceedings of the ACM Conference on Supporting Group Work (GROUP ). ACM, Sanibel Island, FL, 166--177. https://doi.org/10.1145/3148330.3148338Google ScholarGoogle ScholarDigital LibraryDigital Library
  55. Eszter Hargittai. 2008. Whose Space - Differences Among Users and Non -Users of Social Network Sites. Journal of Computer-Mediated Communication, Vol. 13, 1 (2008), 276--297. https://doi.org/10.1111/j.1083--6101.2007.00396.xGoogle ScholarGoogle ScholarCross RefCross Ref
  56. Eszter Hargittai and Yu-li Patrick Hsieh. 2010. From Dabblers to Omnivores : A Typology of Social Network Site Usage. In A Networked Self : Identity, Community, and Culture on Social Network Sites, Zizi Papacharissi (Ed.). Routledge, New York, 146--168.Google ScholarGoogle Scholar
  57. Ellie Harmon and Melissa Mazmanian. 2013. Stories of the Smartphone in Everyday Discourse : Conflict, Tension & Instability. In Proceedings of the ACM Conference on Human Factors in Computing Systems (CHI ). Paris, 1051--1060. https://doi.org/10.1145/2470654.2466134Google ScholarGoogle ScholarDigital LibraryDigital Library
  58. Samantha Jaroszewski, Danielle Lottridge, Oliver L Haimson, and Katie Quehl. 2018. " Genderfluid" or" Attack Helicopter" Responsible HCI Research Practice with Non-binary Gender Variation in Online Communities. In Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems. 1--15.Google ScholarGoogle ScholarDigital LibraryDigital Library
  59. Yongick Jeong and Yeuseung Kim. 2017. Privacy concerns on social networking sites: Interplay among posting types, content, and audiences. Computers in Human Behavior, Vol. 69 (2017), 302--310. https://doi.org/10.1016/j.chb.2016.12.042Google ScholarGoogle ScholarDigital LibraryDigital Library
  60. O. P. John, E. M. Donahue, and R. L. Kentle. 1991. The Big Five Inventory - Versions 4a and 54. Technical Report. University of California Berkeley, Institute of Personality and Social Research, Berkeley, CA.Google ScholarGoogle Scholar
  61. O. P. John, L. P. Naumann, and C. J. Soto. 2008. Paradigm Shift to the Integrative Big-Five Trait Taxonomy: History, Measurement, and Conceptual Issues. In Handbook of personality: Theory and research, O. P. John, R. W. Robins, and L. A. Pervin (Eds.). Guilford Press, New York, NY, 114--158.Google ScholarGoogle Scholar
  62. Dae-Ki Kang and Kiwook Sohn. 2009. Learning decision trees with taxonomy of propositionalized attributes. Pattern Recognition, Vol. 42, 1 (2009), 84--92.Google ScholarGoogle ScholarDigital LibraryDigital Library
  63. Matthew Kay, Steve Haroz, Shion Guha, and Pierre Dragicevic. 2016. Special interest group on transparent statistics in hci. In Proceedings of the 2016 CHI Conference Extended Abstracts on Human Factors in Computing Systems. 1081--1084.Google ScholarGoogle ScholarDigital LibraryDigital Library
  64. Funda Kivran-Swaine, Priya Govindan, and Mor Naaman. 2011. The Impact of Network Structure on Breaking Ties in Online Social Networks : Unfollowing on Twitter. In Proceedings of the ACM Conference on Human Factors in Computing Systems (CHI ). ACM, Vancouver, BC, 1101--1104.Google ScholarGoogle ScholarDigital LibraryDigital Library
  65. Haewoon Kwak, Hyunwoo Chun, and Sue Moon. 2011. Fragile Online Relationship : A First Look at Unfollow Dynamics in Twitter. In Proceedings of the ACM Conference on Human Factors in Computing Systems (CHI ). ACM, Vancouver, BC, 1091--1100. https://doi.org/10.1145/1978942.1979104Google ScholarGoogle ScholarDigital LibraryDigital Library
  66. Cliff Lampe, Jessica Vitak, and Nicole Ellison. 2013. Users and Nonusers : Interactions between Levels of Facebook Adoption and Social Capital. In Proceedings of the ACM Conference on Computer Supported Cooperative Work (CSCW ). Baltimore, MD, 809--819. https://doi.org/10.1145/2441776.2441867Google ScholarGoogle ScholarDigital LibraryDigital Library
  67. Alex Leavitt. 2015. "This Is a Throwaway Account ": Temporary Technical Identities and Perceptions of Anonymity in a Massive Online Community. In Proceedings of the ACM Conference on Computer Supported Cooperative Work & Social Computing (CSCW ) (CSCW '15). ACM, Vancouver, BC, 317--327. https://doi.org/10.1145/2675133.2675175Google ScholarGoogle ScholarDigital LibraryDigital Library
  68. Dominik J. Leiner, Lara Kobilke, Christina Rueß, and Hans-Bernd Brosius. 2018. Functional Domains of Social Media Platforms: Structuring the Uses of Facebook to Better Understand Its Gratifications. Computers in Human Behavior, Vol. 83 (June 2018), 194--203. https://doi.org/10.1016/j.chb.2018.01.042Google ScholarGoogle ScholarDigital LibraryDigital Library
  69. Amanda Lenhart and John B. Horrigan. 2003. Re-Visualizing the Digital Divide as a Digital Spectrum. IT & Society, Vol. 1, 5 (2003), 23--39.Google ScholarGoogle Scholar
  70. Hanlin Li, Nicholas Vincent, Janice Tsai, Jofish Kaye, and Brent Hecht. 2019. How Do People Change Their Technology Use in Protest? Understanding. Proceedings of the ACM on Human-Computer Interaction, Vol. 3, CSCW (2019), 1--22.Google ScholarGoogle ScholarDigital LibraryDigital Library
  71. Kai Lukoff, Cissy Yu, Julie Kientz, and Alexis Hiniker. 2018. What Makes Smartphone Use Meaningful or Meaningless - Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 2, 1 (March 2018), 22:1--22:26. https://doi.org/10.1145/3191754Google ScholarGoogle ScholarDigital LibraryDigital Library
  72. Ulrik Lyngs, Kai Lukoff, Petr Slovak, Reuben Binns, Adam Slack, Michael Inzlicht, Max Van Kleek, and Nigel Shadbolt. 2019. Self-Control in Cyberspace : Applying Dual Systems Theory to a Review of Digital Self -Control Tools. In Proceedings of the ACM Conference on Human Factors in Computing Systems (CHI ). ACM, Glasgow, 131:1--131:18. https://doi.org/10.1145/3290605.3300361Google ScholarGoogle ScholarDigital LibraryDigital Library
  73. Henrik Madsen and Poul Thyregod. 2010. Introduction to general and generalized linear models .CRC Press.Google ScholarGoogle Scholar
  74. Naresh K. Malhotra, Sung S. Kim, and James Agarwal. 2004. Internet Users ' Information Privacy Concerns (IUIPC ): The Construct, the Scale, and a Causal Model. Information Systems Research, Vol. 15, 4 (2004), 336--355.Google ScholarGoogle ScholarDigital LibraryDigital Library
  75. Alice E. Marwick and danah boyd. 2010. I Tweet Honestly, I Tweet Passionately: Twitter Users, Context Collapse, and the Imagined Audience. New Media & Society, Vol. 13, 1 (July 2010), 114--133. https://doi.org/10.1177/1461444810365313Google ScholarGoogle Scholar
  76. Alice E Marwick and danah boyd. 2014. Networked Privacy: How Teenagers Negotiate Context in Social Media. New Media & Society, Vol. 16, 7 (Nov. 2014), 1051--1067. https://doi.org/10.1177/1461444814543995Google ScholarGoogle ScholarCross RefCross Ref
  77. Robert R. McCrae and Paul T. Costa. 1987. Validation of the Five-Factor Model of Personality across Instruments and Observers. Journal of Personality and Social Psychology, Vol. 52, 1 (Jan. 1987), 81--90. https://doi.org/10.1037/0022--3514.52.1.81Google ScholarGoogle ScholarCross RefCross Ref
  78. Robert R. McCrae and Paul T. Jr. Costa. 1997. Personality Trait Structure as a Human Universal. American Psychologist, Vol. 52, 5 (May 1997), 509--516. https://doi.org/10.1037/0003-066X.52.5.509Google ScholarGoogle ScholarCross RefCross Ref
  79. Michael Muller, Shion Guha, Eric P. S. Baumer, David Mimno, and N Sadat Shami. 2016. Machine learning and grounded theory method: Convergence, divergence, and combination. In Proceedings of the 19th International Conference on Supporting Group Work. ACM, 3--8.Google ScholarGoogle ScholarDigital LibraryDigital Library
  80. Blair Nonnecke and Jenny Preece. 2001. Why Lurkers Lurk. In Proceedings of the Americas Conference on Information Systems. Boston.Google ScholarGoogle Scholar
  81. Daniel Oberski. 2016. Mixture models: Latent profile and latent class analysis. In Modern statistical methods for HCI. Springer, 275--287.Google ScholarGoogle Scholar
  82. Judith S Olson and Wendy A Kellogg. 2014. Ways of Knowing in HCI. Vol. 2. Springer.Google ScholarGoogle Scholar
  83. Pew Research Center. 2018. Demographics of Internet and Home Broadband Usage in the United States. Technical Report. Pew Research Center, Internet & Technology, Washington, D.C.Google ScholarGoogle Scholar
  84. Ethan R. Plaut. 2015. Technologies of Avoidance: The Swear Jar and the Cell Phone. First Monday, Vol. 20, 11 (2015). https://doi.org/10.5210/fm.v20i11.6295Google ScholarGoogle ScholarCross RefCross Ref
  85. Laura Portwood-Stacer. 2012. How We Talk About Media Refusal, Part 1: "Addiction ". Flow, Vol. 16, 3 (2012).Google ScholarGoogle Scholar
  86. Laura Portwood-Stacer. 2013. Media Refusal and Conspicuous Non-Consumption: The Performative and Political Dimensions of Facebook Abstention. New Media & Society, Vol. 15, 7 (Nov. 2013), 1041--1057. https://doi.org/10.1177/1461444812465139Google ScholarGoogle ScholarCross RefCross Ref
  87. Jenny Preece, Blair Nonnecke, and Dorine Andrews. 2004. The Top Five Reasons for Lurking: Improving Community Experiences for Everyone. Computers in Human Behavior, Vol. 20, 2 (March 2004), 201--223. https://doi.org/10.1016/j.chb.2003.10.015Google ScholarGoogle ScholarCross RefCross Ref
  88. Lee Rainie, Aaron Smith, and Maeve Duggan. 2013. Coming and Going on Facebook. Technical Report. Pew Research Center, Pew Internet and American Life Project, Washington, D.C.Google ScholarGoogle Scholar
  89. Salvatore Ruggieri. 2017. Enumerating Distinct Decision Trees. In Proceedings of the 34th International Conference on Machine Learning, Vol. PMLR 70. Sydney, Australia, 2960--2968. http://proceedings.mlr.press/v70/ruggieri17a.htmlGoogle ScholarGoogle Scholar
  90. Tracii Ryan and Sophia Xenos. 2011. Who Uses Facebook - An Investigation into the Relationship between the Big Five, Shyness, Narcissism, Loneliness, and Facebook Usage. Computers in Human Behavior, Vol. 27, 5 (Sept. 2011), 1658--1664. https://doi.org/10.1016/j.chb.2011.02.004Google ScholarGoogle ScholarCross RefCross Ref
  91. Nithya Sambasivan, Ed Cutrell, Kentaro Toyama, and Bonnie Nardi. 2010. Intermediated Technology Use in Developing Communities. In Proceedings of the ACM Conference on Human Factors in Computing Systems (CHI ). Atlanta, GA, 2583--2592. https://doi.org/10.1145/1753326.1753718Google ScholarGoogle ScholarDigital LibraryDigital Library
  92. Christine Satchell and Paul Dourish. 2009. Beyond the User: Use and Non-Use in HCI. In Proceedings of the Australasian Computer -Human Interaction Conference (OZCHI ). ACM, Melbourne, Australia, 9--16.Google ScholarGoogle ScholarDigital LibraryDigital Library
  93. Sarita Yardi Schoenebeck. 2014. Giving up Twitter for Lent : How and Why We Take Breaks from Social Media. In Proceedings of the ACM Conference on Human Factors in Computing Systems (CHI ). Toronto, ON, 773--782. https://doi.org/10.1145/2556288.2556983Google ScholarGoogle ScholarDigital LibraryDigital Library
  94. H. Jeff Smith, Sandra J. Milberg, and Sandra J. Burke. 1996. Information Privacy : Measuring Individuals ' Concerns about Organizational Practices. MIS Quarterly, Vol. 20, 2 (June 1996), 167. https://doi.org/10.2307/249477Google ScholarGoogle ScholarDigital LibraryDigital Library
  95. Katta Spiel, Oliver L Haimson, and Danielle Lottridge. 2019. How to do better with gender on surveys: a guide for HCI researchers. interactions, Vol. 26, 4 (2019), 62--65.Google ScholarGoogle ScholarDigital LibraryDigital Library
  96. Stefan Stieger, Christoph Burger, Manuel Bohn, and Martin Voracek. 2013. Who Commits Virtual Identity Suicide - Differences in Privacy Concerns, Internet Addiction, and Personality between Facebook Users and Quitters. Cyberpsychology, Behavior, and Social Networking, Vol. 16, 9 (Sept. 2013), 629--34. https://doi.org/10.1089/cyber.2012.0323Google ScholarGoogle ScholarCross RefCross Ref
  97. Adam Tapal, Ela Oren, Reuven Dar, and Baruch Eitam. 2017. The Sense of Agency Scale : A Measure of Consciously Perceived Control over One 's Mind, Body, and the Immediate Environment. Frontiers in Psychology, Vol. 8 (Sept. 2017). https://doi.org/10.3389/fpsyg.2017.01552Google ScholarGoogle ScholarCross RefCross Ref
  98. Zeynep Tufekci. 2008. Grooming, Gossip, Facebook and MySpace. Information, Communication & Society, Vol. 11, 4 (June 2008), 544--564. https://doi.org/10.1080/13691180801999050Google ScholarGoogle ScholarCross RefCross Ref
  99. Yang Wang, Gregory Norcie, and Lorrie Faith Cranor. 2011. Who Is Concerned about What? A Study of American, Chinese and Indian Users' Privacy Concerns on Social Network Sites. Trust 2011, Vol. LNCS 6740 (2011), 146--153. https://doi.org/10.1007/978--3--642--21599--5_11Google ScholarGoogle Scholar
  100. Tom Wells and Michael Link. 2014. Facebook User Research Using a Probability -Based Sample and Behavioral Data. Journal of Computer-Mediated Communication, Vol. 19, 4 (July 2014), 1042--1052. https://doi.org/10.1111/jcc4.12058Google ScholarGoogle ScholarDigital LibraryDigital Library
  101. Jason Weston and Chris Watkins. 1998. Multi-class support vector machines. Technical Report. Citeseer.Google ScholarGoogle Scholar
  102. David S White and Alison Le Cornu. 2011. Visitors and Residents: A new typology for online engagement. First Monday, Vol. 16, 9 (2011).Google ScholarGoogle ScholarCross RefCross Ref
  103. Pamela Wisniewski, Heng Xu, and Yunan Chen. 2014. Understanding User Adaptation Strategies for the Launching of Facebook Timeline. In Proceedings of the ACM Conference on Human Factors in Computing Systems (CHI ). ACM, Toronto, ON, 2421--2430. https://doi.org/10.1145/2556288.2557363Google ScholarGoogle ScholarDigital LibraryDigital Library
  104. Sally Wyatt. 2003. Non-Users Also Matter : The Construction of Users and Non -Users of the Internet. In How Users Matter : The Co -Construction of Users and Technology, Nelly Oudshoorn and Trevor Pinch (Eds.). MIT Press, Cambridge, MA, 67--79.Google ScholarGoogle Scholar
  105. Susan Wyche and Eric P. S. Baumer. 2016. Imagined Facebook: An Exploratory Study of Non-Users Perceptions of Social Media in Rural Zambia. New Media & Society (2016). https://doi.org/10.1177/1461444815625948Google ScholarGoogle Scholar
  106. Susan P. Wyche, Sarita Yardi Schoenebeck, and Andrea Forte. 2013. "Facebook Is a Luxury ": An Exploratory Study of Social Media Use in Rural Kenya. In Proceedings of the ACM Conference on Computer Supported Cooperative Work & Social Computing (CSCW). San Antonio, TX, 33--43. https://doi.org/10.1145/2441776.2441783Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Methods for Generating Typologies of Non/use

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in

        Full Access

        • Published in

          cover image Proceedings of the ACM on Human-Computer Interaction
          Proceedings of the ACM on Human-Computer Interaction  Volume 4, Issue CSCW1
          CSCW
          May 2020
          1285 pages
          EISSN:2573-0142
          DOI:10.1145/3403424
          Issue’s Table of Contents

          Copyright © 2020 ACM

          Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 29 May 2020
          Published in pacmhci Volume 4, Issue CSCW1

          Permissions

          Request permissions about this article.

          Request Permissions

          Check for updates

          Qualifiers

          • research-article

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader