skip to main content
research-article

Forcing and Calculi for Hybrid Logics

Published:06 August 2020Publication History
Skip Abstract Section

Abstract

The definition of institution formalizes the intuitive notion of logic in a category-based setting. Similarly, the concept of stratified institution provides an abstract approach to Kripke semantics. This includes hybrid logics, a type of modal logics expressive enough to allow references to the nodes/states/worlds of the models regarded as relational structures, or multi-graphs. Applications of hybrid logics involve many areas of research, such as computational linguistics, transition systems, knowledge representation, artificial intelligence, biomedical informatics, semantic networks, and ontologies. The present contribution sets a unified foundation for developing formal verification methodologies to reason about Kripke structures by defining proof calculi for a multitude of hybrid logics in the framework of stratified institutions. To prove completeness, the article introduces a forcing technique for stratified institutions with nominal and frame extraction and studies a forcing property based on syntactic consistency. The proof calculus is shown to be complete and the significance of the general results is exhibited on a couple of benchmark examples of hybrid logical systems.

References

  1. Marc Aiguier and Razvan Diaconescu. 2007. Stratified institutions and elementary homomorphisms. Info. Process. Lett. 103, 1 (2007), 5--13.Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Carlos Areces and Patrick Blackburn. 2001. Bringing them all together. J. Logic Comput. 11, 5 (2001), 657--669.Google ScholarGoogle ScholarCross RefCross Ref
  3. Egidio Astesiano, Michel Bidoit, Hélène Kirchner, Bernd Krieg-Brückner, Peter D. Mosses, Donald Sannella, and Andrzej Tarlecki. 2002. CASL: The common algebraic specification language. Theoret. Comput. Sci. 286, 2 (2002), 153--196.Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Franz Baader, Ian Horrocks, Carsten Lutz, and Uli Sattler. 2017. An Introduction to Description Logic. Cambridge University Press. DOI:https://doi.org/10.1017/9781139025355Google ScholarGoogle Scholar
  5. Jon Barwise. 1970. Notes on forcing and countable fragments (unpublished).Google ScholarGoogle Scholar
  6. Jean-Yves Béziau. 2006. 13 questions about universal logic. Bull. Sect. Logic 35, 2/3 (2006), 133--150.Google ScholarGoogle Scholar
  7. Jean-Yves Béziau. 2012. Universal Logic: An Anthology: From Paul Hertz to Dov Gabbay. Birkhäuser, Basel.Google ScholarGoogle ScholarCross RefCross Ref
  8. Patrick Blackburn. 2000. Representation, reasoning, and relational structures: A hybrid logic manifesto. Logic J. IGPL 8, 3 (2000), 339--365.Google ScholarGoogle ScholarCross RefCross Ref
  9. Patrick Blackburn, Manuel A. Martins, María Manzano, and Antonia Huertas. 2019. Rigid first-order hybrid logic. In Proceedings of the 26th International Workshop on Logic, Language, Information, and Computation (WoLLIC’19) (Lecture Notes in Computer Science), Rosalie Iemhoff, Michael Moortgat, and Ruy J. G. B. de Queiroz (Eds.), Vol. 11541. Springer, 53--69.Google ScholarGoogle ScholarCross RefCross Ref
  10. Patrick Blackburn and Maarten Marx. 2002. Tableaux for quantified hybrid logic. In Proceedings of the International Conference on Automated Reasoning with Analytic Tableaux and Related Methods (TABLEAUX’02) (Lecture Notes in Computer Science), Uwe Egly and Christian G. Fermüller (Eds.), Vol. 2381. Springer, 38--52.Google ScholarGoogle ScholarCross RefCross Ref
  11. Torben Braüner. 2011. Hybrid Logic and Its Proof-Theory. Applied Logic Series, Vol. 37. Springer, Netherlands.Google ScholarGoogle Scholar
  12. Mihai Codescu. 2019. Hybridisation of institutions in HETS (tool paper). In Proceedings of the 8th Conference on Algebra and Coalgebra in Computer Science (CALCO’19), Markus Roggenbach and Ana Sokolova (Eds.), Vol. 139. Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 17:1--17:10.Google ScholarGoogle Scholar
  13. Mihai Codescu and Daniel Găină. 2008. Birkhoff completeness in institutions. Logica Universalis 2, 2 (2008), 277--309.Google ScholarGoogle ScholarCross RefCross Ref
  14. Paul J. Cohen. 1963. The independence of the continuum hypothesis. Proc. Natl. Acad. Sci. U.S.A. 50, 6 (Dec. 1963), 1143--1148.Google ScholarGoogle ScholarCross RefCross Ref
  15. Paul J. Cohen. 1964. The independence of the continuum hypothesis, II. Proc. Natl. Acad. Sci. U.S.A. 51, 1 (Jan. 1964), 105--110.Google ScholarGoogle ScholarCross RefCross Ref
  16. Ionuţ Ţutu and José Luiz Fiadeiro. 2017. From conventional to institution-independent logic programming. J. Logic Comput. 27, 6 (2017), 1679--1716.Google ScholarGoogle Scholar
  17. Răzvan Diaconescu. 2003. Institution-independent ultraproducts. Fundamenta Informaticæ 55, 3–4 (2003), 321--348.Google ScholarGoogle Scholar
  18. Răzvan Diaconescu. 2004. An institution-independent proof of craig interpolation theorem. Studia Logica 77, 1 (2004), 59--79.Google ScholarGoogle ScholarCross RefCross Ref
  19. Razvan Diaconescu. 2004. Elementary diagrams in institutions. J. Logic Comput. 14, 5 (2004), 651--674.Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Razvan Diaconescu. 2004. Herbrand theorems in arbitrary institutions. Info. Process. Lett. 90, 1 (2004), 29--37.Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Răzvan Diaconescu. 2006. Proof systems for institutional logic. J. Logic Comput. 16, 3 (2006), 339--357.Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Răzvan Diaconescu. 2008. Institution-independent Model Theory (1 ed.). Birkhäuser, Basel.Google ScholarGoogle Scholar
  23. Răzvan Diaconescu. 2016. Quasi-varieties and initial semantics for hybridized institutions. J. Logic Comput. 26, 3 (2016), 855--891.Google ScholarGoogle ScholarCross RefCross Ref
  24. Razvan Diaconescu. 2017. Implicit Kripke semantics and ultraproducts in stratified institutions. J. Logic Comput. 27, 5 (2017), 1577--1606.Google ScholarGoogle Scholar
  25. Razvan Diaconescu and Kokichi Futatsugi. 2002. Logical foundations of CafeOBJ. Theoret. Comput. Sci. 285, 2 (2002), 289--318.Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Răzvan Diaconescu and Alexandre Madeira. 2016. Encoding hybridised institutions into first-order logic. Math. Struct. Comput. Sci. 26, 5 (2016), 745--788.Google ScholarGoogle ScholarCross RefCross Ref
  27. Razvan Diaconescu and Marius Petria. 2010. Saturated models in institutions. Arch. Math. Log. 49, 6 (2010), 693--723.Google ScholarGoogle ScholarCross RefCross Ref
  28. Razvan Diaconescu and Petros S. Stefaneas. 2007. Ultraproducts and possible worlds semantics in institutions. Theoret. Comput. Sci. 379, 1–2 (2007), 210--230.Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Marcelo Finger and Dov M. Gabbay. 1992. Adding a temporal dimension to a logic system. J. Logic Lang. Info. 1, 3 (Sep. 1992), 203--233.Google ScholarGoogle Scholar
  30. Melvin Fitting and Richard L. Mendelsohn. 1998. First-Order Modal Logic. Kluwer Academic Publishers.Google ScholarGoogle Scholar
  31. Joseph Goguen and Rod Burstall. 1992. Institutions: Abstract model theory for specification and programming. J. Assoc. Comput. Mach. 39, 1 (1992), 95--146.Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Joseph A. Goguen and José Meseguer. 1992. Order-sorted algebra I: Equational deduction for multiple inheritance, overloading, exceptions and partial operations. Theoret. Comput. Sci. 105, 2 (1992), 217--273.Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Daniel Găină. 2013. Interpolation in logics with constructors. Theoret. Comput. Sci. 474 (2013), 46--59.Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Daniel Găină. 2014. Forcing, downward Löwenheim-Skolem and omitting types theorems, institutionally. Logica Universalis 8, 3-4 (2014), 469--498.Google ScholarGoogle ScholarCross RefCross Ref
  35. Daniel Găină. 2015. Foundations of logic programming in hybridised logics. In Proceedings of the 22nd International Workshop on Recent Trends in Algebraic Development Techniques (WADT’14) (Lecture Notes in Computer Science), Mihai Codescu, Răzvan Diaconescu, and Ionuţ Ţuţu (Eds.), Vol. 9463. Springer, 69--89.Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Daniel Găină. 2017. Birkhoff style calculi for hybrid logics. Formal Asp. Comput. 29, 5 (2017), 805--832.Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Daniel Găină. 2017. Downward Löwenheim-Skolem Theorem and interpolation in logics with constructors. J. Logic Comput. 27, 6 (2017), 1717--1752.Google ScholarGoogle ScholarCross RefCross Ref
  38. Daniel Găină. 2017. Foundations of logic programming in hybrid logics with user-defined sharing. Theor. Comput. Sci. 686 (2017), 1--24.Google ScholarGoogle ScholarCross RefCross Ref
  39. Daniel Găină and Ionut Ţuţu. 2019. Birkhoff completeness for hybrid-dynamic first-order logic. In Proceedings of the 28th International Conference on Automated Reasoning with Analytic Tableaux and Related Methods (TABLEAUX’19) (Lecture Notes in Computer Science), Serenella Cerrito and Andrei Popescu (Eds.), Vol. 11714. Springer, 277--293.Google ScholarGoogle ScholarCross RefCross Ref
  40. Daniel Găină and Kokichi Futatsugi. 2015. Initial semantics in logics with constructors. J. Logic Comput. 25, 1 (2015), 95--116.Google ScholarGoogle ScholarCross RefCross Ref
  41. Daniel Găină, Kokichi Futatsugi, and Kazuhiro Ogata. 2012. Constructor-based logics. J. UCS 18, 16 (2012), 2204--2233.Google ScholarGoogle Scholar
  42. Daniel Găină and Marius Petria. 2010. Completeness by forcing. J. Logic Comput. 20, 6 (2010), 1165--1186.Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. Daniel Găină and Andrei Popescu. 2006. An institution-independent generalization of Tarski’s elementary chain theorem. J. Logic Comput. 16, 6 (2006), 713--735.Google ScholarGoogle ScholarCross RefCross Ref
  44. Daniel Găină and Andrei Popescu. 2007. An institution-independent proof of robinson consistency theorem. Studia Logica 85, 1 (2007), 41--73.Google ScholarGoogle ScholarCross RefCross Ref
  45. Joseph Y. Halpern and Yoav Shoham. 1991. A propositional modal logic of time intervals. J. ACM 38, 4 (1991), 935--962. DOI:https://doi.org/10.1145/115234.115351Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. Wilfrid Hodges. 1993. Model Theory. Cambridge University Press, UK.Google ScholarGoogle Scholar
  47. H. Jerome Keisler. 1973. Forcing and the omitting types theorem. In Studies in Model Theory, M. D. Morley (Ed.), Vol. 8. Math. Assoc. Amer, New York, 96--133.Google ScholarGoogle Scholar
  48. Saunders MacLane. 1998. Categories for the Working Mathematician. Springer-Verlag, New York.Google ScholarGoogle Scholar
  49. Alexandre Madeira, Manuel A. Martins, Luís Soares Barbosa, and Rolf Hennicker. 2015. Refinement in hybridised institutions. Formal Aspects Comput. 27, 2 (2015), 375--395.Google ScholarGoogle ScholarDigital LibraryDigital Library
  50. Manuel A. Martins, Alexandre Madeira, Razvan Diaconescu, and Luís Soares Barbosa. 2011. Hybridization of institutions. In Proceedings of the 4th International Conference on Algebra and Coalgebra in Computer Science (CALCO’11) (Lecture Notes in Computer Science), Andrea Corradini, Bartek Klin, and Corina Cîrstea (Eds.), Vol. 6859. Springer, 283--297.Google ScholarGoogle ScholarCross RefCross Ref
  51. Joseph Meseguer. 1989. General logics. In Proceedings of the Logic Colloquium ’87, H.-D. Ebbinghaus, J. Fernandez-Prida, M. Garrido, D. Lascar, and M. Rodriguez Artalejo (Eds.). Studies in Logic and the Foundations of Mathematics, Vol. 129. North Holland, 275--329.Google ScholarGoogle ScholarCross RefCross Ref
  52. José Meseguer. 1997. Membership algebra as a logical framework for equational specification. In Proceedings of the 12th International Workshop on Recent Trends in Algebraic Development Techniques (WADT’97) (Lecture Notes in Computer Science), Francesco Parisi-Presicce (Ed.), Vol. 1376. Springer, 18--61.Google ScholarGoogle Scholar
  53. Bernhard Möller, Andrzej Tarlecki, and Martin Wirsing. 1987. Algebraic specifications of reachable higher-order algebras. In Proceedings of the International Conference on Algorithmic Decision Theory (ADT’87) (Lecture Notes in Computer Science), Donald Sannella and Andrzej Tarlecki (Eds.), Vol. 332. Springer, 154--169.Google ScholarGoogle Scholar
  54. Till Mossakowski, Razvan Diaconescu, and Andrzej Tarlecki. 2009. What is a logic translation? Logica Universalis 3, 1 (2009), 95--124.Google ScholarGoogle ScholarCross RefCross Ref
  55. Till Mossakowski, Anne Elisabeth Haxthausen, Donald Sannella, and Andrzej Tarlecki. 2003. CASL—The common algebraic specification language: Semantics and proof theory. Comput. Artific. Intell. 22, 3-4 (2003), 285--321.Google ScholarGoogle Scholar
  56. Till Mossakowski, Christian Maeder, and Klaus Lüttich. 2007. The heterogeneous tool set (hets). In Proceedings of 4th International Verification Workshop in connection with CADE-21 (CEUR Workshop Proceedings), Bernhard Beckert (Ed.), Vol. 259. Retrieved from CEUR-WS.org.Google ScholarGoogle ScholarCross RefCross Ref
  57. Renato Neves, Alexandre Madeira, Manuel A. Martins, and Luís Soares Barbosa. 2016. Proof theory for hybrid(ised) logics. Sci. Comput. Program. 126 (2016), 73--93.Google ScholarGoogle ScholarDigital LibraryDigital Library
  58. Renato Neves, Manuel A. Martins, and Luís Soares Barbosa. 2014. Completeness and decidability results for hybrid(ised) logics. In Proceedings of the 17th Brazilian Symposium on Formal Methods: Foundations and Applications (SBMF’14) (Lecture Notes in Computer Science), Christiano Braga and Narciso Martí-Oliet (Eds.), Vol. 8941. Springer, 146--161.Google ScholarGoogle Scholar
  59. Solomon Passay and Tinko Tinchev. 1991. An essay in combinatory dynamic logic. Info. Comput. 93, 2 (1991), 263--332.Google ScholarGoogle Scholar
  60. Marius Petria. 2007. An institutional version of Gödel’s completeness theorem. In Proceedings of the 2nd International Conference on Algebra and Coalgebra in Computer Science (CALCO’07) (Lecture Notes in Computer Science), Till Mossakowski, Ugo Montanari, and Magne Haveraaen (Eds.), Vol. 4624. Springer, 409--424.Google ScholarGoogle ScholarCross RefCross Ref
  61. Marius Petria and Răzvan Diaconescu. 2006. Abstract Beth definability in institutions. J. Symbol. Logic 71, 3 (2006), 1002--1028.Google ScholarGoogle ScholarCross RefCross Ref
  62. Arthur Prior. 1967. Past, Present and Future. Oxford University Press, Oxford.Google ScholarGoogle Scholar
  63. Joseph R. Shoenfield. 1967. Mathematical Logic. Addison-Wesley, Reading, MA.Google ScholarGoogle Scholar
  64. Abraham Robinson. 1971. Forcing in model theory. Symp. Math. 5 (1971), 69--82.Google ScholarGoogle Scholar
  65. William C. Rounds. 1997. Chapter 8—Feature logics. In Handbook of Logic and Language, Johan van Benthem and Alice ter Meulen (Eds.). North-Holland, Amsterdam, 475--533. DOI:https://doi.org/10.1016/B978-044481714-3/50012-6Google ScholarGoogle Scholar
  66. Donald Sannella and Andrzej Tarlecki. 1988. Specifications in an arbitrary institution. Info. Comput. 76, 2/3 (1988), 165--210.Google ScholarGoogle ScholarDigital LibraryDigital Library
  67. Gerhard Schurz. 2011. Combinations and completeness transfer for quantified modal logics. Logic Journal of the IGPL 19, 4 (2011), 598--616.Google ScholarGoogle ScholarCross RefCross Ref
  68. Robert Szepesia and Horia Ciocârlie. 2011. An overview on software reconfiguration. Theory Appl. Math. Comput. Sci. 1, 1 (2011), 74--79.Google ScholarGoogle Scholar
  69. Andrzej Tarlecki. 1985. On the existence of free models in abstract algebraic institutions. Theor. Comput. Sci. 37 (1985), 269--304.Google ScholarGoogle ScholarCross RefCross Ref
  70. Andrzej Tarlecki. 1986. Bits and pieces of the theory of institutions. In Proceedings of the Summer Workshop on Category Theory and Computer Programming (Lecture Notes in Computer Science), David Pitt, Samson Abramsky, Axel Poigné, and David Rydeheard (Eds.). Vol. 240. Springer, 334--360.Google ScholarGoogle ScholarCross RefCross Ref
  71. Andrzej Tarlecki. 1986. Quasi-varieties in abstract algebraic institutions. J. Comput. System Sci. 33, 3 (1986), 333--360.Google ScholarGoogle ScholarDigital LibraryDigital Library
  72. Ionut Tutu, Claudia Elena Chirita, Antónia Lopes, and José Luiz Fiadeiro. 2019. Logical support for bike-sharing system design. In Proceedings From Software Engineering to Formal Methods and Tools, and Back—Essays Dedicated to Stefania Gnesi on the Occasion of Her 65th Birthday (Lecture Notes in Computer Science), Maurice H. ter Beek, Alessandro Fantechi, and Laura Semini (Eds.), Vol. 11865. Springer, 152--171.Google ScholarGoogle Scholar
  73. Christoph Weidenbach, Uwe Brahm, Thomas Hillenbrand, Enno Keen, Christian Theobalt, and Dalibor Topic. 2002. SPASS Version 2.0. In Proceedings of the 18th International Conference on Automated Deduction (CADE’02) (Lecture Notes in Computer Science), Andrei Voronkov (Ed.), Vol. 2392. Springer, 275--279.Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. Forcing and Calculi for Hybrid Logics

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in

        Full Access

        • Published in

          cover image Journal of the ACM
          Journal of the ACM  Volume 67, Issue 4
          August 2020
          265 pages
          ISSN:0004-5411
          EISSN:1557-735X
          DOI:10.1145/3403612
          Issue’s Table of Contents

          Copyright © 2020 ACM

          Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 6 August 2020
          • Accepted: 1 May 2020
          • Revised: 1 March 2020
          • Received: 1 August 2018
          Published in jacm Volume 67, Issue 4

          Permissions

          Request permissions about this article.

          Request Permissions

          Check for updates

          Qualifiers

          • research-article
          • Research
          • Refereed

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader

        HTML Format

        View this article in HTML Format .

        View HTML Format