skip to main content
10.1145/3416012.3424628acmconferencesArticle/Chapter ViewAbstractPublication PagesmobicomConference Proceedingsconference-collections
research-article

Challenges and Potential Solutions for Designing A Practical Pedestrian Detection Framework for Supporting Autonomous Driving

Published:16 November 2020Publication History

ABSTRACT

In recent years, in the face of the increasingly complicated traffic environment caused by the significant increase in the number of motor vehicles, in order to improve road traffic safety, autonomous driving technology has become the focus of research, and various related approaches have been proposed. Among them, the design of practical traffic-related target detection method has received a lot of attention as an indispensable prerequisite for vehicles to independently formulate pedestrian and obstacle collision avoidance strategies. In this article, we will first briefly introduce the development of related detection technologies. Then we will systematically introduce the current development trend of traffic target detection technology, and focus on the technical problems and related technical challenges that have not been solved by the existing methods in practical use. At the end of the article, we will provide some potential solutions to these challenges.

References

  1. T. Begin, A. Busson, I. Guérin Lassous, and A. Boukerche. Video on demand in ieee 802.11p-based vehicular networks: Analysis and dimensioning. In Proc. ACM MSWiM, pages 303--310, 2018. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. BMW. Intelligent driving. [Online]. Available: https://www.bmw.ca/en/topics/experience/connected-drive/bmw-connecteddrive-driver-assistance.html, 2019. Accessed on: May, 2019.Google ScholarGoogle Scholar
  3. M. Braun, S. Krebs, F. Flohr, and D. M. Gavrila. Eurocity persons: A novel benchmark for person detection in traffic scenes. IEEE Trans. Pattern Anal. Mach. Intell., 41(8):1844--1861, 2019.Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. G. Brazil and X. Liu. Pedestrian detection with autoregressive network phases. In Proc. IEEE/CVF CVPR, pages 7224--7233, 2019.Google ScholarGoogle ScholarCross RefCross Ref
  5. G. Brazil, X. Yin, and X. Liu. Illuminating pedestrians via simultaneous detection and segmentation. In Proc. IEEE ICCV, pages 4960--4969, 2017.Google ScholarGoogle ScholarCross RefCross Ref
  6. N. Dalal and B. Triggs. Histograms of oriented gradients for human detection. In Proc. IEEE/CVF CVPR, volume 1, pages 886--893, 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. M. Di Felice, L. Bedogni, and L. Bononi. Dysco: A dynamic spectrum and contention control framework for enhanced broadcast communication in vehicular networks. In Proc. ACM MobiWac, pages 97--106, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. P. Dollar, S. Belongie, and P. Perona. The fastest pedestrian detector in the west. In Proc. BMVC, pages 68:1--68:11, 2010.Google ScholarGoogle ScholarCross RefCross Ref
  9. P. Dollar, Z. Tu, P. Perona, and S. Belongie. Integral channel features. In Proc. BMVC, pages 91:1--91:11, 2009.Google ScholarGoogle ScholarCross RefCross Ref
  10. P. Dollar, C. Wojek, B. Schiele, and P. Perona. Pedestrian detection: An evaluation of the state of the art. IEEE Trans. Pattern Anal. Mach. Intell., 34(4):743--761, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. P. Dollár, R. Appel, S. Belongie, and P. Perona. Fast feature pyramids for object detection. IEEE Trans. Pattern Anal. Mach. Intell., 36(8):1532--1545, 2014. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. X. Du, M. El-Khamy, J. Lee, and L. Davis. Fused dnn: A deep neural network fusion approach to fast and robust pedestrian detection. In Proc. IEEE WACV, pages 953--961, 2017.Google ScholarGoogle ScholarCross RefCross Ref
  13. X. Du, M. El-Khamy, V. I. Morariu, J. Lee, and L. Davis. Fused deep neural networks for efficient pedestrian detection, 2018.Google ScholarGoogle Scholar
  14. P. Felzenszwalb, D. McAllester, and D. Ramanan. A discriminatively trained, multiscale, deformable part model. In Proc. IEEE/CVF CVPR, pages 1--8, 2008.Google ScholarGoogle ScholarCross RefCross Ref
  15. H. Ge, Y. Song, C. Wu, J. Ren, and G. Tan. Cooperative deep q-learning with q-value transfer for multi-intersection signal control. IEEE Access, 7:40797--40809, 2019.Google ScholarGoogle ScholarCross RefCross Ref
  16. A. Geiger, P. Lenz, and R. Urtasun. Are we ready for autonomous driving? the kitti vision benchmark suite. In Proc. IEEE/CVF CVPR, pages 3354--3361, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. R. Girshick. Fast r-cnn. In Proc. IEEE ICCV, pages 1440--1448, 2015. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich feature hierarchies for accurate object detection and semantic segmentation. In Proc. IEEE/CVF CVPR, pages 580--587, 2014. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In Proc. IEEE/CVF CVPR, pages 770--778, 2016.Google ScholarGoogle ScholarCross RefCross Ref
  20. D. P. Huttenlocher, G. A. Klanderman, and W. J. Rucklidge. Comparing images using the hausdorff distance. IEEE Trans. Pattern Anal. Mach. Intell., 15(9):850--863, 1993. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional neural networks. In Proc. NIPS, pages 1097--1105, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. D. Li, B. Fu, Y. Wang, G. Lu, Y. Berezin, H. E. Stanley, and S. Havlin. Percolation transition in dynamical traffic network with evolving critical bottlenecks. Proceedings of the National Academy of Sciences, 112(3):669--672, 2015.Google ScholarGoogle ScholarCross RefCross Ref
  23. X. Liang, X. Du, G. Wang, and Z. Han. A deep reinforcement learning network for traffic light cycle control. IEEE Trans. Veh. Technol., 68(2):1243--1253, 2019.Google ScholarGoogle ScholarCross RefCross Ref
  24. C. Lin, J. Lu, G. Wang, and J. Zhou. Graininess-aware deep feature learning for pedestrian detection. In Proc. ECCV, pages 732--747. Springer, 2018.Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. A. Mammeri, D. Zhou, and A. Boukerche. Animal-vehicle collision mitigation system for automated vehicles. IEEE Trans. Syst., Man, Cybern. Syst., 46(9):1287--1299, 2016.Google ScholarGoogle ScholarCross RefCross Ref
  26. J. Mao, T. Xiao, Y. Jiang, and Z. Cao. What can help pedestrian detection? In Proc. IEEE/CVF CVPR, pages 6034--6043, 2017.Google ScholarGoogle ScholarCross RefCross Ref
  27. Mercedes Benz. Mercedes safety. [Online]. Available: https://www.mbusa.com/mercedes/benz/safety, 2019. Accessed on: May, 2019.Google ScholarGoogle Scholar
  28. B. S. P. Dollar, C. Wojek and P. Perona. Caltech pedestrian detection benchmark. [Online]. Available: http://www.vision.caltech.edu/Image_Datasets/CaltechPedestrians/, July 2019. Accessed on: April., 2020.Google ScholarGoogle Scholar
  29. P. Sun and A. Boukerche. Tvdr: A novel traffic volume aware data routing protocol for vehicular networks. In Proc. WCNC, 2019.Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. S. Ren, K. He, R. Girshick, and J. Sun. Faster r-cnn: Towards real-time object detection with region proposal networks. IEEE Trans. Pattern Anal. Mach. Intell., 39(6):1137--1149, 2017. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. C. Rezende, R. W. Pazzi, and A. Boukerche. A reactive solution with a redundancy-based error correction mechanism for video dissemination over vehicular ad hoc networks. In Proc. ACM MSWiM, pages 343--352, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. W. R. Schwartz, A. Kembhavi, D. Harwood, and L. S. Davis. Human detection using partial least squares analysis. In Proc. ICCV, pages 24--31, 2009.Google ScholarGoogle ScholarCross RefCross Ref
  33. K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image recognition. In Proc. ICLR, 2015.Google ScholarGoogle Scholar
  34. T. Song, L. Sun, D. Xie, H. Sun, and S. Pu. Small-scale pedestrian detection based on topological line localization and temporal feature aggregation. In Proc. ECCV, pages 554--569, 2018.Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. T. Song, L. Sun, D. Xie, H. Sun, and S. Pu. Small-scale pedestrian detection based on topological line localization and temporal feature aggregation. In Proc. ECCV, pages 554--569. Springer, 2018.Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. P. Sun, N. Aljeri, and A. Boukerche. A fast vehicular traffic flow prediction scheme based on fourier and wavelet analysis. In Proc. Globecom, pages 1--6, 2018.Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. P. Sun, N. AlJeri, and A. Boukerche. Dacon: A novel traffic prediction and data-highway-assisted content delivery protocol for intelligent vehicular networks. IEEE Trans. Sustain. Comput., pages 1--1, 2020. Early access, DOI: 10.1109/TSUSC.2020.2971628.Google ScholarGoogle ScholarCross RefCross Ref
  38. P. Sun and A. Boukerche. A novel passive road side unit detection scheme in vehicular networks. In Proc. Globecom, pages 1--5, 2017.Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. P. Sun and A. Boukerche. Challenges of designing computer vision-based pedestrian detector for supporting autonomous driving. In Proc. IEEE MASS, pages 28--36, 2019.Google ScholarGoogle ScholarCross RefCross Ref
  40. P. Sun and A. Boukerche. Ai-assisted data dissemination methods for supporting intelligent transportation systems. Internet Technol. Lett., page e169, 2020. Early access, DOI: https://doi.org/10.1002/itl2.169.Google ScholarGoogle Scholar
  41. P. Sun and A. Boukerche. A novel internet-of-vehicles assisted collaborative low-visible pedestrian detection approach. In Proc. IEEE Globecom, 2020. accepted.Google ScholarGoogle Scholar
  42. P. Sun, A. Boukerche, and R. W. L. Coutinho. A novel cloudlet-dwell-time estimation method for assisting vehicular edge computing applications. In Proc. Globecom, pages 1--6, 2019.Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. P. Sun and N. Samaan. Random node failures and wireless networks connectivity: Theoretical analysis. IEEE Wireless Commun. Lett., 4(5):461--464, 2015.Google ScholarGoogle ScholarCross RefCross Ref
  44. T. Tan, F. Bao, Y. Deng, A. Jin, Q. Dai, and J. Wang. Cooperative deep reinforcement learning for large-scale traffic grid signal control. IEEE Trans. Cybern., pages 1--14, 2019. Early Access.Google ScholarGoogle Scholar
  45. Z. Tang and A. Boukerche. An improved algorithm for road markings detection with svm and roi restriction: Comparison with a rule-based model. In Proc. ICC, pages 1--6, 2018.Google ScholarGoogle ScholarCross RefCross Ref
  46. The Insurance Corporation of British Columbia. Crashes involving. [Online]. Available: https://www.icbc.com/about-icbc/newsroom/Documents/crashes-involving.pdf, 2019. Accessed on: June., 2020.Google ScholarGoogle Scholar
  47. Y. Tian, P. Luo, X. Wang, and X. Tang. Pedestrian detection aided by deep learning semantic tasks. In Proc. IEEE/CVF CVPR, pages 5079--5087, 2015.Google ScholarGoogle ScholarCross RefCross Ref
  48. U.S. Department of Transportation. Congestion pricing - a primer: Overview. [Online]. Available: https://ops.fhwa.dot.gov/publications/fhwahop08039/cp_prim1_02.htm, Feb. 2017. Accessed on: May, 2019.Google ScholarGoogle Scholar
  49. U.S. National Highway Traffic Safety Administration. 2017 pedestrians traffic safety fact sheet. [Online]. Available: https://crashstats.nhtsa.dot.gov/Api/Public/ViewPublication/812681, 2019. Accessed on: April., 2020.Google ScholarGoogle Scholar
  50. S. Walk, N. Majer, K. Schindler, and B. Schiele. New features and insights for pedestrian detection. In Proc. IEEE CVPR, pages 1030--1037, 2010.Google ScholarGoogle ScholarCross RefCross Ref
  51. S. Wang. Pcn: Part and context information for pedestrian detection with cnns. In Proc. BMVC, pages 34:1--34:13, 2017.Google ScholarGoogle ScholarCross RefCross Ref
  52. X. Wang, T. X. Han, and S. Yan. An hog-lbp human detector with partial occlusion handling. In Proc. ICCV, pages 32--39, 2009.Google ScholarGoogle ScholarCross RefCross Ref
  53. X. Wang, T. Xiao, Y. Jiang, S. Shao, J. Sun, and C. Shen. Repulsion loss: Detecting pedestrians in a crowd. In Proc. IEEE/CVF CVPR, pages 7774--7783, 2018.Google ScholarGoogle ScholarCross RefCross Ref
  54. C. Wojek and B. Schiele. A performance evaluation of single and multi-feature people detection. In G. Rigoll, editor, Proc. DAGM, volume 5096, pages 82--91, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  55. M. D. Zeiler and R. Fergus. Visualizing and understanding convolutional networks. In Proc. ECCV, pages 818--833, 2014.Google ScholarGoogle ScholarCross RefCross Ref
  56. L. Zhang, G. Zeng, D. Li, H.-J. Huang, H. E. Stanley, and S. Havlin. Scale-free resilience of real traffic jams. Proceedings of the National Academy of Sciences, 116(18):8673--8678, 2019.Google ScholarGoogle ScholarCross RefCross Ref
  57. S. Zhang, L. Wen, X. Bian, Z. Lei, and T. Z. Li. Occlusion-aware r-cnn: Detecting pedestrians in a crowd. In Proc. ECCV, pages 657--674. Springer, 2018.Google ScholarGoogle ScholarDigital LibraryDigital Library
  58. S. Zhang, J. Yang, and B. Schiele. Occluded pedestrian detection through guided attention in cnns. In Proc. IEEE/CVF CVPR, pages 6995--7003, 2018.Google ScholarGoogle ScholarCross RefCross Ref
  59. X. Zhang, L. Cheng, B. Li, and H. Hu. Too far to see? not really!-pedestrian detection with scale-aware localization policy. IEEE Trans. Image Process., 27(8):3703--3715, 2018.Google ScholarGoogle Scholar
  60. D. Zhao, Y. Chen, and L. Lv. Deep reinforcement learning with visual attention for vehicle classification. IEEE Trans. Cogn. Devel. Syst., 9(4):356--367, 2017.Google ScholarGoogle ScholarCross RefCross Ref
  61. C. Zhou and J. Yuan. Bi-box regression for pedestrian detection and occlusion estimation. In Proc. ECCV, pages 138--154. Springer, 2018.Google ScholarGoogle ScholarDigital LibraryDigital Library
  62. Z. Zou, Z. Shi, Y. Guo, and J. Ye. Object detection in 20 years: A survey. [Online]. Available: https://arxiv.org/abs/1905.05055, 2019.Google ScholarGoogle Scholar

Index Terms

  1. Challenges and Potential Solutions for Designing A Practical Pedestrian Detection Framework for Supporting Autonomous Driving

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in
        • Published in

          cover image ACM Conferences
          MobiWac '20: Proceedings of the 18th ACM Symposium on Mobility Management and Wireless Access
          November 2020
          148 pages
          ISBN:9781450381192
          DOI:10.1145/3416012

          Copyright © 2020 ACM

          Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 16 November 2020

          Permissions

          Request permissions about this article.

          Request Permissions

          Check for updates

          Qualifiers

          • research-article

          Acceptance Rates

          Overall Acceptance Rate83of272submissions,31%

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader