skip to main content
10.1145/3450508.3464571acmconferencesArticle/Chapter ViewAbstractPublication PagessiggraphConference Proceedingsconference-collections
course

Contact and friction simulation for computer graphics

Published:21 July 2021Publication History

ABSTRACT

Efficient simulation of contact is of interest for numerous physics-based animation applications. For instance, virtual reality training, video games, rapid digital prototyping, and robotics simulation are all examples of applications that involve contact modeling and simulation. However, despite its extensive use in modern computer graphics, contact simulation remains one of the most challenging problems in physics-based animation.

This course covers fundamental topics on the nature of contact modeling and simulation for computer graphics. Specifically, we provide mathematical details about formulating contact as a complementarity problem in rigid body and soft body animations. We briefly cover several approaches for contact generation using discrete collision detection. Then, we present a range of numerical techniques for solving the associated LCPs and NCPs. The advantages and disadvantages of each technique are further discussed in a practical manner, and best practices for implementation are discussed. Finally, we conclude the course with several advanced topics, such as anisotropic friction modeling and proximal operators. Programming examples are provided on the course website to accompany the course notes.

Skip Supplemental Material Section

Supplemental Material

3450508.3464571.mp4

References

  1. V. Acary, F. Cadoux, C. Lemaréchal, and J. Malick. 2011. A formulation of the linear discrete Coulomb friction problem via convex optimization. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 91, 2 (2011), 155--175.Google ScholarGoogle ScholarCross RefCross Ref
  2. S. Andrews, K. Erleben, P. G. Kry, and M. Teichmann. 2017. Constraint reordering for iterative multi-body simulation with contact. In ECCOMAS '17: Proc. of the Multibody Dynamics 2007 ECCOMAS Thematic Conference. ECCOMAS, Prague, Czech Republic.Google ScholarGoogle Scholar
  3. M. Anitescu and G. D. Hart. 2004. A constraint-stabilized time-stepping approach for rigid multibody dynamics with joints, contact and friction. Intl. Journal for Numerical Methods in Engineering 60, 14 (2004), 2335--2371. Google ScholarGoogle ScholarCross RefCross Ref
  4. M. Anitescu and F. A. Potra. 1997. Formulating Dynamic Multi-Rigid-Body Contact Problems with Friction as Solvable Linear Complementarity Problems. Nonlinear Dynamics 14 (1997), 231--247. Issue 3. Google ScholarGoogle ScholarCross RefCross Ref
  5. M. Anitescu and A. Tasora. 2010. An iterative approach for cone complementarity problems for nonsmooth dynamics. Computational Optimization and Applications 47, 2 (October 2010), 207--235. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. D. Baraff. 1993. Issues in computing contact forces for nonpenetrating rigid bodies. Algorithmica. An Intl. Journal in Computer Science 10, 2-4 (1993), 292--352. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. D. Baraff. 1994. Fast contact force computation for nonpenetrating rigid bodies. In Proc. of the 21st Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH '94). ACM, New York, NY, USA, 23--34. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. A. W. Bargteil, T. Shinar, and P. G. Kry. 2020. An Introduction to Physics-Based Animation. In SIGGRAPH Asia 2020 Courses (Virtual Event) (SA '20). ACM, New York, NY, USA, Article 5, 57 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. J. Baumgarte. 1972. Stabilization of constraints and integrals of motion in dynamical systems. Computer Methods in Applied Mechanics and Engineering 1, 1 (1972), 1--16. Google ScholarGoogle ScholarCross RefCross Ref
  10. J. Bender, K. Erleben, and J. Trinkle. 2014. Interactive Simulation of Rigid Body Dynamics in Computer Graphics. Comp. Graph. Forum 33, 1 (2014), 246--270.Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. S. Boyd and L. Vandenberghe. 2004. Convex Optimization. Cambridge University Press, Cambridge. Bridson, R. Fedkiw, and J. Anderson. 2002. Robust Treatment of Collisions, Contact and Friction for Cloth Animation. ACM Trans. Graph. 21, 3 (July 2002), 594--603. https://doi.org/10.1145/566654.566623 Google ScholarGoogle ScholarCross RefCross Ref
  12. D. T. Chen and D. Zeltzer. 1992. Pump It up: Computer Animation of a Biomechanically Based Model of Muscle Using the Finite Element Method. In Proc. of the 19th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH '92). ACM, New York, NY, USA, 89--98. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. M. B. Cline and D. K. Pai. 2003. Post-stabilization for rigid body simulation with contact and constraints. In 2003 IEEE Intl. Conference on Robotics and Automation, Vol. 3. IEEE, Taipei, Taiwan, 3744--3751. Google ScholarGoogle ScholarCross RefCross Ref
  14. R. Cottle. 1968. Complementary Pivot Theory of Mathematical Programming. Linear Algebra and Its Applications 1 (1968), 103--125. Google ScholarGoogle ScholarCross RefCross Ref
  15. R. Cottle, J.-S. Pang, and R. E. Stone. 1992. The Linear Complementarity Problem. Academic Press, Boston.Google ScholarGoogle Scholar
  16. E. Coumans. 2005. The Bullet Physics Library. http://www.pybullet.org.Google ScholarGoogle Scholar
  17. G. Daviet. 2020. Simple and Scalable Frictional Contacts for Thin Nodal Objects. ACM Trans. Graph. 39, 4, Article 61 (July 2020), 16 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. G. Daviet, F. Bertails-Descoubes, and L. Boissieux. 2011. A hybrid iterative solver for robustly capturing coulomb friction in hair dynamics. ACM Trans. Graph. 30, 6, Article 139 (Dec. 2011), 12 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. A. Enzenhoefer, N. Lefebvre, and S. Andrews. 2019. Efficient Block Pivoting for Multibody Simulations with Contact. In Proc. of the 2019 ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games (Montreal, Quebec, Canada) (I3D '19). ACM, New York, NY, USA, Article 2, 9 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. K. Erleben. 2005. Stable, Robust, and Versatile Multibody Dynamics Animation. Ph.D. Dissertation. Department of Computer Science, University of Copenhagen (DIKU).Google ScholarGoogle Scholar
  21. K. Erleben. 2007. Velocity-Based Shock Propagation for Multibody Dynamics Animation. ACM Trans. Graph. 26, 2 (June 2007), 12--es. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. K. Erleben. 2017. Rigid Body Contact Problems Using Proximal Operators. In Proc. of the 2017 ACM SIGGRAPH / Eurographics Symposium on Computer Animation (Los Angeles, California) (SCA '17). ACM, New York, NY, USA, Article 13, 12 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. K. Erleben, M. Andersen, N. S., and S. M. 2011. num4lcp. https://github.com/erleben/num4lcp.Google ScholarGoogle Scholar
  24. K. Erleben, M. Macklin, S. Andrews, and P. G. Kry. 2020. The Matchstick Model for Anisotropic Friction Cones. Comp. Graph. Forum 39, 1 (2020), 450--461. Google ScholarGoogle ScholarCross RefCross Ref
  25. M. C. Ferris and T. S. Munson. 1999. Interfaces to PATH 3.0: Design, Implementation and Usage. Comput. Optim. Appl. 12 (January 1999), 207--227. Issue 1--3. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. A. Fischer. 1992. A special newton-type optimization method. Optimization 24, 3-4 (1992), 269--284. Google ScholarGoogle Scholar
  27. M. Foerg, T. Geier, L. Neumann, and H. Ulbrich. 2006. r-Factor Strategies for the Augmented Lagrangian Approach in Multi-Body Contact Mechanics. In III European Conference on Computational Mechanics. Springer Netherlands, Dordrecht, NL, 316. Google ScholarGoogle ScholarCross RefCross Ref
  28. M. Fratarcangeli and F. Pellacini. 2015. Scalable Partitioning for Parallel Position Based Dynamics. Comput. Graph. Forum 34, 2 (May 2015), 405--413. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. S. F. Frisken, R. N. Perry, A. P. Rockwood, and T. R. Jones. 2000. Adaptively Sampled Distance Fields: A General Representation of Shape for Computer Graphics. In Proc. of the 27th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH '00). ACM Press/Addison-Wesley Publishing Co., USA, 249--254. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. M. Geilinger, D. Hahn, J. Zehnder, M. Bächer, B. Thomaszewski, and S. Coros. 2020. ADD: Analytically Differentiable Dynamics for Multi-Body Systems with Frictional Contact. ACM Trans. Graph. 39, 6, Article 190 (Nov. 2020), 15 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. E. G. Gilbert, D. W. Johnson, and S. S. Keerthi. 1988. A fast procedure for computing the distance between complex objects in three-dimensional space. IEEE Journal on Robotics and Automation 4, 2 (1988), 193--203. Google ScholarGoogle ScholarCross RefCross Ref
  32. H. Goldstein, C. Poole, and J. Safko. 2002. Classical mechanics. Addison-Wesley, USA. 638 pages.Google ScholarGoogle Scholar
  33. S. Goyal, A. Ruina, and J. Papadopoulos. 1989. Limit Surface and Moment Funktion Descriptions of Planar Sliding. In Proc. of the 1989 IEEE Intl. Conference on Robotics and Automation (Vol. 2). IEEE, Scottsdale, AZ, 794--799.Google ScholarGoogle Scholar
  34. S. Hasegawa, N. Fujii, Y. Koike, and M. Sato. 2003. Real-Time Rigid Body Simulation Based on Volumetric Penalty Method. In HAPTICS '03: Proc. of the 11th Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems. IEEE Computer Society, Los Alamitos, CA, USA, 326. Google ScholarGoogle ScholarCross RefCross Ref
  35. J. Jansson and J. S. M. Vergeest. 2002. A discrete mechanics model for deformable bodies. Computer-Aided Design 34, 12 (2002), 913--928.Google ScholarGoogle ScholarCross RefCross Ref
  36. J. Jansson and J. S. M. Vergeest. 2003. Combining Deformable- and Rigid-Body Mechanics Simulation. Vis. Comput. 19, 5 (Aug. 2003), 280--290. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. M. Jean. 1999. The non-smooth contact dynamics method. Computer Methods in Applied Mechanics and Engineering 177, 3-4 (July 1999), 235--257. Google ScholarGoogle ScholarCross RefCross Ref
  38. M. W. Jones, J. A. Baerentzen, and M. Sramek. 2006. 3D distance fields: A survey of techniques and applications. IEEE Transactions on visualization and Computer Graphics 12, 4 (2006), 581--599.Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. F. Jourdan, P. Alart, and M. Jean. 1998. A Gauss-Seidel like algorithm to solve frictional contact problems. Computer Methods in Applied Mechanics and Engineering 155, 1 (1998), 31 -- 47.Google ScholarGoogle ScholarCross RefCross Ref
  40. J. J. Júdice and F. M. Pires. 1994. A block principal pivoting algorithm for large-scale strictly monotone linear complementarity problems. Computers & operations research 21, 5 (1994), 587--596.Google ScholarGoogle Scholar
  41. D. M. Kaufman, S. Sueda, D. L. James, and D. K. Pai. 2008. Staggered Projections for Frictional Contact in Multibody Systems. ACM Trans. Graph. 27, 5, Article Article 164 (Dec. 2008), 11 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. T. Kim and D. Eberle. 2020. Dynamic Deformables: Implementation and Production Practicalities. In ACM SIGGRAPH 2020 Courses (Virtual Event, USA) (SIGGRAPH '20). ACM, New York, NY, USA, Article 23, 182 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. Y.J. Kim, M. A. Otaduy, M. C. Lin, and D. Manocha. 2002. Fast Penetration Depth Computation for Physically-Based Animation. In Proc. of the 2002 ACM SIGGRAPH/Eurographics Symposium on Computer Animation (San Antonio, Texas) (SCA '02). ACM, New York, NY, USA, 23--31. Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. D. Koschier, C. Deul, and J. Bender. 2016. Hierarchical Hp-Adaptive Signed Distance Fields. In Proc. of the 2016 ACM SIGGRAPH/Eurographics Symposium on Computer Animation (Zurich, Switzerland) (SCA '16). Eurographics Association, Goslar, DEU, 189--198.Google ScholarGoogle Scholar
  45. C. Lacoursiere and M. Linde. 2011. Spook: a variational time-stepping scheme for rigid multibody systems subject to dry frictional contacts. Technical Report. HPC2N and Department of Computer Science, Umeaa University, Sweeden.Google ScholarGoogle Scholar
  46. R. I. Leine and C. Glocker. 2003. A set-valued force law for spatial coulomb-contensou friction. European Journal of Mechanics - A/Solids 22, 2 (2003), 193--216. Google ScholarGoogle ScholarCross RefCross Ref
  47. J. Lloyd. 2005. Fast Implementation of Lemke's Algorithm for Rigid Body Contact Simulation. In ICRA '05: Proc. of the 2005 IEEE Intl. Conference on Robotics and Automation. IEEE, Barcelona, Spain, 4538--4543. Google ScholarGoogle ScholarCross RefCross Ref
  48. P. Lötstedt. 1984. Numerical Simulation of Time-Dependent Contact and Friction Problems in Rigid Body Mechanics. SIAM journal on scientific and statistical computing 5, 2 (1984), 370--393.Google ScholarGoogle Scholar
  49. M. Macklin, K. Erleben, M. Müller, N. Chentanez, S. Jeschke, and Z. Corse. 2020a. Local Optimization for Robust Signed Distance Field Collision. Proc. of the ACM on Computer Graphics and Interactive Techniques 3, 1 (2020), 1--17.Google ScholarGoogle ScholarDigital LibraryDigital Library
  50. M. Macklin, K. Erleben, M. Müller, N. Chentanez, S. Jeschke, and T. Y. Kim. 2020b. Primal/Dual Descent Methods for Dynamics. In Proc. of the 2020 ACM SIGGRAPH/Eurographics Symposium on Computer Animation (Virtual Event, Canada) (SCA '20). Eurographics Association, Goslar, DEU, Article 9, 12 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  51. M. Macklin, K. Erleben, M. Müller, N. Chentanez, S. Jeschke, and V. Makoviychuk. 2019. Non-Smooth Newton Methods for Deformable Multi-Body Dynamics. ACM Trans. Graph. 38, 5, Article Article 140 (Oct. 2019), 20 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  52. H. Mazhar, T. Heyn, D. Negrut, and A. Tasora. 2015. Using Nesterov's Method to Accelerate Multibody Dynamics with Friction and Contact. ACM Trans. Graph. 34, 3, Article 32 (May 2015), 14 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  53. M. McKenna and D. Zeltzer. 1990. Dynamic simulation of autonomous legged locomotion. In Proc. of the 17th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH '90). ACM, Dallas, TX, USA, 29--38. Google ScholarGoogle ScholarDigital LibraryDigital Library
  54. X. Merlhiot. 2007. A robust, efficient and time-stepping compatible collision detection method for non-smooth contact between rigid bodies of arbitrary shape. In ECCOMAS '07: Proc. of the 2007 Multibody Dynamics ECCOMAS Thematic Conference. ECCOMAS, Milano, Italy, 20.Google ScholarGoogle Scholar
  55. M. Moore and J. Wilhelms. 1988. Collision detection and response for computer animationr3. In Proc. of the 15th annual conference on Computer graphics and interactive techniques (SIGGRAPH '88). ACM, New York, NY, USA, 289--298. Google ScholarGoogle ScholarDigital LibraryDigital Library
  56. J. J. Moreau. 1999. Numerical aspects of the sweeping process. Computer Methods in Applied Mechanics and Engineering 177, 3-4 (July 1999), 329--349.Google ScholarGoogle ScholarCross RefCross Ref
  57. T. S. Munson, F. Facchinei, M. C. Ferris, A. Fischer, and C. Kanzow. 2001. The Semismooth Algorithm for Large Scale Complementarity Problems. INFORMS Journal on Computing 13, 4 (2001), 294--311. Google ScholarGoogle ScholarCross RefCross Ref
  58. K. G. Murty. 1974. Note on a Bard-type scheme for solving the complementarity problem. Opsearch 11, 2-3 (1974), 123--130.Google ScholarGoogle Scholar
  59. K. G. Murty and F.-T. Yu. 1988. Linear Complementarity, Linear and Nonlinear Programming. Vol. 3. Helderman-Verlag, Berlin, Germany. 629 pages.Google ScholarGoogle Scholar
  60. S. M. Niebe. 2014. Rigid Bodies in Contact: and Everything in Between. Ph.D. Dissertation. Department of Computer Science, Faculty of Science, University of Copenhagen.Google ScholarGoogle Scholar
  61. J. Nocedal and S. J. Wright. 2006. Numerical optimization. Springer-Verlag, New York. 664 pages. Google ScholarGoogle ScholarCross RefCross Ref
  62. S. Pabst, B. Thomaszewski, and W. Straßer. 2009. Anisotropic Friction for Deformable Surfaces and Solids. In Proc. of the 2009 ACM SIGGRAPH/Eurographics Symposium on Computer Animation (New Orleans, Louisiana) (SCA '09). ACM, New York, NY, USA, 149--154. Google ScholarGoogle ScholarDigital LibraryDigital Library
  63. N. Parikh and S. Boyd. 2014. Proximal Algorithms. Found. Trends Optim. 1, 3 (Jan. 2014), 127--239.Google ScholarGoogle ScholarDigital LibraryDigital Library
  64. A. Peiret, S. Andrews, J. Kovecses, P. G. Kry, and M. Teichmann. 2019. Schur Complement-based Substructuring of Stiff Multibody Systems with Contact. ACM Trans. Graph. 38, 5, Article 150 (2019), 17 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  65. M. Poulsen, S. Niebe, and K. Erleben. 2010. Heuristic Convergence Rate Improvements of the Projected Gauss-Seidel Method for Frictional Contact Problems. In WSCG '10: In Proc. of the 18th Intl. Conf. in Central Europe on Computer Graphics, Visualization and Computer Vision. University of West Bohemia, Plzen, Czech Republic, 135--142.Google ScholarGoogle Scholar
  66. G. Sheng Chen and X. Liu. 2016. Chapter 3 - Friction. In Friction Dynamics, Gang Sheng Chen and Xiandong Liu (Eds.). Woodhead Publishing, Cambridge, UK, 91--159. Google ScholarGoogle ScholarCross RefCross Ref
  67. E. Sifakis and J. Barbic. 2012. FEM Simulation of 3D Deformable Solids: A Practitioner's Guide to Theory, Discretization and Model Reduction. In ACM SIGGRAPH 2012 Courses (Los Angeles, California) (SIGGRAPH '12). ACM, New York, NY, USA, Article 20, 50 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  68. M. Silcowitz, S. Niebe, and K. Erleben. 2009. Nonsmooth Newton Method for Fischer Function Reformulation of Contact Force Problems for Interactive Rigid Body Simulation. In Proc. of the 6th Workshop on Virtual Reality Interaction and Physical Simulation (Karlsruhe, DE) (VRIPHYS '09). The Eurographics Association, Karlsruhe, DE, 105--114. Google ScholarGoogle ScholarCross RefCross Ref
  69. M. Silcowitz, S. Niebe, and K. Erleben. 2010a. A nonsmooth nonlinear conjugate gradient method for interactive contact force problems. The Visual Computer 26, 6 (2010), 893--901. Google ScholarGoogle ScholarDigital LibraryDigital Library
  70. M. Silcowitz, S. Niebe, and K. Erleben. 2010b. Projected Gauss-Seidel Subspace Minimization Method for Interactive Rigid Body Dynamics. In VISIGRAPP '10: Proc. of the 5th Intl. Conference on Computer Graphics Theory and Applications. Springer Berlin Heidelberg, Angers, France, 218--229. Google ScholarGoogle ScholarCross RefCross Ref
  71. M. Silcowitz-Hansen. 2010. Jinngine: a Physics Engine Written In Java. https://github.com/rzel/jinngineGoogle ScholarGoogle Scholar
  72. D. E. Stewart and J. C. Trinkle. 1996. An Implicit Time-Stepping Scheme for Rigid Body Dynamics with Inelastic Collisions and Coulomb Friction. Intl. Journal of Numerical Methods in Engineering 39, 15 (1996), 2673--2691.Google ScholarGoogle ScholarCross RefCross Ref
  73. C. W. Studer. 2008. Augmented Time-stepping Integration of Non-smooth Dynamical Systems. Ph.D. Dissertation. ETH Zurich. Google ScholarGoogle ScholarCross RefCross Ref
  74. I. E. Sutherland and G. W. Hodgman. 1974. Reentrant polygon clipping. Commun. ACM 17, 1 (1974), 32--42. Google ScholarGoogle ScholarDigital LibraryDigital Library
  75. A. Tasora, D. Mangoni, S. Benatti, and R. Garziera. 2021. Solving variational inequalities and cone complementarity problems in nonsmooth dynamics using the alternating direction method of multipliers. Intl. Journal for Numerical Methods in Engineering n/a, n/a (2021). Google ScholarGoogle ScholarCross RefCross Ref
  76. D. Terzopoulos, J. Platt, A. Barr, and K. Fleischer. 1987. Elastically Deformable Models. In Proc. of the 14th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH '87). Association for Computing Machinery, New York, NY, USA, 205--214. Google ScholarGoogle ScholarDigital LibraryDigital Library
  77. G. Van Den Bergen. 2003. Collision detection in interactive 3D environments. CRC Press, San Francisco, USA. 277 pages.Google ScholarGoogle Scholar
  78. H. Xu and J. Barbič. 2014. Signed distance fields for polygon soup meshes. In Proc. of the 40th Graphics Interface Conference (GI '14). Canadian Information Processing Society, Montreal, Canada, 35--41. Google ScholarGoogle ScholarDigital LibraryDigital Library
  79. H. Xu, Y. Zhao, and J. Barbič. 2014. Implicit Multibody Penalty-based Distributed Contact. IEEE Transactions on Visualization and Computer Graphics 20, 9 (Sep. 2014), 1266--1279. Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. Contact and friction simulation for computer graphics

          Recommendations

          Comments

          Login options

          Check if you have access through your login credentials or your institution to get full access on this article.

          Sign in
          • Published in

            cover image ACM Conferences
            SIGGRAPH '21: ACM SIGGRAPH 2021 Courses
            August 2021
            2220 pages
            ISBN:9781450383615
            DOI:10.1145/3450508

            Copyright © 2021 Owner/Author

            Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses, contact the Owner/Author.

            Publisher

            Association for Computing Machinery

            New York, NY, United States

            Publication History

            • Published: 21 July 2021

            Check for updates

            Qualifiers

            • course

            Acceptance Rates

            Overall Acceptance Rate1,822of8,601submissions,21%

          PDF Format

          View or Download as a PDF file.

          PDF

          eReader

          View online with eReader.

          eReader