skip to main content
10.1145/3450623.3464636acmconferencesArticle/Chapter ViewAbstractPublication PagessiggraphConference Proceedingsconference-collections
invited-talk

NoR-VDPNet++: Efficient Training and Architecture for Deep No-Reference Image Quality Metrics

Published:06 August 2021Publication History

ABSTRACT

Efficiency and efficacy are two desirable properties of the utmost importance for any evaluation metric having to do with Standard Dynamic Range (SDR) imaging or High Dynamic Range (HDR) imaging. However, these properties are hard to achieve simultaneously. On the one side, metrics like HDR-VDP2.2 are known to mimic the human visual system (HVS) very accurately, but its high computational cost prevents its widespread use in large evaluation campaigns. On the other side, computationally cheaper alternatives like PSNR or MSE fail to capture many of the crucial aspects of the HVS. In this work, we try to get the best of the two worlds: we present NoR-VDPNet++, an improved variant of a previous deep learning-based metric for distilling HDR-VDP2.2 into a convolutional neural network (CNN). In this work, we try to get the best of the two worlds: we present NoR-VDPNet++, an improved version of a deep learning-based metric for distilling HDR-VDP2.2 into a convolutional neural network (CNN).

Skip Supplemental Material Section

Supplemental Material

3450623.3464636.mp4

References

  1. Alessandro Artusi, Francesco Banterle, Alejandro Moreo, and Fabio Carrara. 2019. Efficient Evaluation of Image Quality via Deep-Learning Approximation of Perceptual Metrics. IEEE Transactions on Image Processing 29 (oct 2019), 1843–1855. http://vcg.isti.cnr.it/Publications/2019/ABMC19Google ScholarGoogle Scholar
  2. Tunç Ozan Aydın, Rafał Mantiuk, Karol Myszkowski, and Hans-Peter Seidel. 2008. Dynamic Range Independent Image Quality Assessment. ACM Transactions on Graphics (TOG) 27, 3, Article 69(2008).Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Francesco Banterle, Alessandro Artusi, Alejandro Moreo, and Fabio Carrara. 2020. NoR-VDPNet: A No-Reference High Dynamic Range Quality Metric Trained on HDR-VDP 2. In IEEE International Conference on Image Processing (ICIP). IEEE. http://vcg.isti.cnr.it/Publications/2020/BAMC20Google ScholarGoogle ScholarCross RefCross Ref
  4. Sergey Ioffe and Christian Szegedy. 2015. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In International conference on machine learning. PMLR, 448–456.Google ScholarGoogle Scholar
  5. Manish Narwaria, Rafał K. Mantiuk, Mattheiu Perreira Da Silva, and Patrick Le Callet. 2015. HDR-VDP-2.2: A calibrated method for objective quality prediction of high dynamic range and standard images. Journal of Electronic Imaging 24, 1 (2015).Google ScholarGoogle ScholarCross RefCross Ref

Recommendations

Comments

Login options

Check if you have access through your login credentials or your institution to get full access on this article.

Sign in
  • Published in

    cover image ACM Conferences
    SIGGRAPH '21: ACM SIGGRAPH 2021 Talks
    July 2021
    116 pages
    ISBN:9781450383738
    DOI:10.1145/3450623

    Copyright © 2021 Owner/Author

    Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses, contact the Owner/Author.

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    • Published: 6 August 2021

    Check for updates

    Qualifiers

    • invited-talk
    • Research
    • Refereed limited

    Acceptance Rates

    Overall Acceptance Rate1,822of8,601submissions,21%
  • Article Metrics

    • Downloads (Last 12 months)10
    • Downloads (Last 6 weeks)0

    Other Metrics

PDF Format

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

HTML Format

View this article in HTML Format .

View HTML Format