skip to main content
research-article

Guaranteed-quality higher-order triangular meshing of 2D domains

Published:19 July 2021Publication History
Skip Abstract Section

Abstract

We present a guaranteed quality mesh generation algorithm for the curvilinear triangulation of planar domains with piecewise polynomial boundary. The resulting mesh consists of higher-order triangular elements which are not only regular (i.e., with injective geometric map) but respect strict bounds on quality measures like scaled Jacobian and MIPS distortion. This also implies that the curved triangles' inner angles are bounded from above and below. These are key quality criteria, for instance, in the field of finite element analysis. The domain boundary is reproduced exactly, without geometric approximation error. The central idea is to transform the curvilinear meshing problem into a linear meshing problem via a carefully constructed transformation of bounded distortion, enabling us to leverage key results on guaranteed-quality straight-edge triangulation. The transformation is based on a simple yet general construction and observations about convergence properties of curves under subdivision. Our algorithm can handle arbitrary polynomial order, arbitrarily sharp corners, feature and interface curves, and can be executed using rational arithmetic for strict reliability.

Skip Supplemental Material Section

Supplemental Material

3450626.3459673.mp4

References

  1. Remi Abgrall, Cécile Dobrzynski, and Algiane Froehly. 2014. A method for computing curved meshes via the linear elasticity analogy, application to fluid dynamics problems. International Journal for Numerical Methods in Fluids 76, 4 (2014), 246--266.Google ScholarGoogle ScholarCross RefCross Ref
  2. I. Babuska and A. K. Aziz. 1976. On the Angle Condition in the Finite Element Method. SIAM J. Numer. Anal. 13, 2 (1976), 214--226.Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Marshall Bern, David Eppstein, and John Gilbert. 1994. Provably good mesh generation. J. Comput. System Sci. 48, 3 (1994), 384--409.Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Jean-Daniel Boissonnat, Olivier Devillers, Monique Teillaud, and Mariette Yvinec. 2000. Triangulations in CGAL. In Proc. 16th Symp. on Computational Geometry. 11--18.Google ScholarGoogle Scholar
  5. Charles Boivin and Carl Ollivier-Gooch. 2002. Guaranteed-quality triangular mesh generation for domains with curved boundaries. Int. J. Numer. Methods Eng. 55, 10 (2002), 1185--1213.Google ScholarGoogle ScholarCross RefCross Ref
  6. Jan Brandts, Antti Hannukainen, Sergey Korotov, and Michal Křîžek. 2011. On angle conditions in the finite element nethod. SeMA Journal 56 (09 2011), 81--95.Google ScholarGoogle Scholar
  7. Siu-Wing Cheng, Tamal K Dey, and Jonathan Shewchuk. 2012. Delaunay mesh generation. CRC Press.Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. L. Paul Chew. 1989. Guaranteed-Quality Triangular Meshes. Tech. Rep. Department of Computer Science, Cornell University.Google ScholarGoogle Scholar
  9. L. Paul Chew. 1993. Guaranteed-Quality Mesh Generation for Curved Surfaces. In Proc. 9th Symp. on Computational Geometry. 274--280.Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. P.G. Ciarlet and P.-A. Raviart. 1972a. The Combined Effect of Curved Boundaries and Numerical Integration in Isoparametric Finite Element Methods. In The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations, A.K. Aziz (Ed.). Academic Press, 409 -- 474.Google ScholarGoogle Scholar
  11. P.G. Ciarlet and P.-A. Raviart. 1972b. Interpolation theory over curved elements, with applications to finite element methods. Comput. Methods Appl. Mech. Eng. 1, 2 (1972).Google ScholarGoogle Scholar
  12. Y. Colin de Verdière and A. Marin. 1990. Triangulations presque équilatérales des surfaces. J. Differential Geom. 32, 1 (1990), 199--207.Google ScholarGoogle Scholar
  13. Mark de Berg, Marc van Kreveld, Mark Overmars, and Otfried Cheong Schwarzkopf. 2000. Polygon Triangulation. Springer Berlin Heidelberg, Berlin, Heidelberg, 45--61.Google ScholarGoogle Scholar
  14. Saikat Dey, Robert M. O'Bara, and Mark S. Shephard. 1999. Curvilinear Mesh Generation In 3D. In Proc. International Meshing Roundtable. John Wiley & Sons, 407--417.Google ScholarGoogle Scholar
  15. Luke Engvall and John A. Evans. 2020. Mesh quality metrics for isogeometric Bernstein-Bézier discretizations. Comput. Methods Appl. Mech. Eng. 371 (2020).Google ScholarGoogle Scholar
  16. Hale Erten and Alper Üngör. 2009. Quality Triangulations with Locally Optimal Steiner Points. SIAM Journal on Scientific Computing 31, 3 (2009), 2103--2130.Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Gerald Farin. 1986. Triangular Bernstein-Bézier patches. Computer Aided Geometric Design 3, 2 (1986), 83--127.Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Leman Feng, Pierre Alliez, Laurent Busé, Hervé Delingette, and Mathieu Desbrun. 2018. Curved Optimal Delaunay Triangulation. ACM Trans. Graph. 37, 4 (2018).Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. A. Fournier and D. Y. Montuno. 1984. Triangulating Simple Polygons and Equivalent Problems. ACM Trans. Graph. 3, 2 (April 1984), 153--174.Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Isaac Fried. 1972. Condition of finite element matrices generated from nonuniform meshes. Aiaa Journal 10, 2 (1972), 219--221.Google ScholarGoogle ScholarCross RefCross Ref
  21. P.L. George and H. Borouchaki. 2012. Construction of tetrahedral meshes of degree two. Int. J. Numer. Methods Eng. 90, 9 (2012), 1156--1182.Google ScholarGoogle ScholarCross RefCross Ref
  22. William J. Gordon and Charles A. Hall. 1973. Transfinite element methods: Blending-function interpolation over arbitrary curved element domains. Numer. Math. 21, 2 (1973), 109--129.Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Serge Gosselin and Carl Ollivier-Gooch. 2007. Revisiting Delaunay Refinement Triangular Mesh Generation on Curve-bounded Domains. Technical Report. U British Columbia.Google ScholarGoogle Scholar
  24. Jens Gravesen, Anton Evgrafov, Dang-Manh Nguyen, and Peter Nørtoft. 2014. Planar Parametrization in Isogeometric Analysis. In Mathematical Methods for Curves and Surfaces. Springer Berlin Heidelberg, 189--212.Google ScholarGoogle Scholar
  25. Robert Haber, Mark S. Shephard, John F. Abel, Richard H. Gallagher, and Donald P. Greenberg. 1981. A general two-dimensional, graphical finite element preprocessor utilizing discrete transfinite mappings. Int. J. Numer. Methods Eng. 17, 7 (1981).Google ScholarGoogle ScholarCross RefCross Ref
  26. Victoria Hernandez-Mederos, Jorge Estrada-Sarlabous, and Dionne León Madrigal. 2006. On local injectivity of 2D triangular cubic Bezier functions. Investigación Operacional 27, 3 (2006), 261--275.Google ScholarGoogle Scholar
  27. Kai Hormann and Günther Greiner. 2000. MIPS: An efficient global parametrization method. Curve and Surface Design '99 (2000), 153--162.Google ScholarGoogle Scholar
  28. Yixin Hu, Teseo Schneider, Xifeng Gao, Qingnan Zhou, Alec Jacobson, Denis Zorin, and Daniele Panozzo. 2019. TriWild: Robust Triangulation with Curve Constraints. ACM Trans. Graph. 38, 4 (2019).Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. A. Johnen, C. Geuzaine, T. Toulorge, and J.-F. Remacle. 2016. Efficient Computation of the Minimum of Shape Quality Measures on Curvilinear Finite Elements. Procedia Engineering 163 (2016), 328 -- 339.Google ScholarGoogle ScholarCross RefCross Ref
  30. Patrick M. Knupp. 2000. Achieving finite element mesh quality via optimization of the Jacobian matrix norm and associated quantities. Part I---a framework for surface mesh optimization. Internat. J. Numer. Methods Engrg. 48, 3 (2000), 401--420.Google ScholarGoogle ScholarCross RefCross Ref
  31. Richard Leroy. 2008. Certificates of positivity and polynomial minimization in the multivariate Bernstein basis. Ph.D. Dissertation. University of Rennes 1.Google ScholarGoogle Scholar
  32. J. Li, T. J. Peters, and J. A. Roulier. 2012. Angular Convergence during Bézier Curve Approximation. arXiv:1210.2686 [math.GT]Google ScholarGoogle Scholar
  33. Manish Mandad and Marcel Campen. 2020a. Bézier Guarding: Precise Higher-Order Meshing of Curved 2D Domains. ACM Trans. Graph. 39, 4, Article 103 (2020).Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Manish Mandad and Marcel Campen. 2020b. Efficient piecewise higher-order parametrization of discrete surfaces with local and global injectivity. Computer-Aided Design 127 (2020).Google ScholarGoogle Scholar
  35. Gary L. Miller, Steven E. Pav, and Noel J. Walkington. 2003. When and Why Ruppert's Algorithm Works. In Proc. 12th International Meshing Roundtable. 91--102.Google ScholarGoogle Scholar
  36. Géraldine Morin and Ron Goldman. 2001. On the smooth convergence of subdivision and degree elevation for Bézier curves. Comput. Aided Geom. Des. 18, 7 (2001).Google ScholarGoogle Scholar
  37. D. Moxey, D. Ekelschot, Ü. Keskin, S.J. Sherwin, and J. Peiró. 2016. High-order Curvilinear Meshing Using a Thermo-elastic Analogy. Comput. Aided Des. 72, C (2016).Google ScholarGoogle Scholar
  38. Peter Oswald. 2015. Divergence of FEM: Babuška-Aziz triangulations revisited. Applications of Mathematics 60, 5 (2015), 473--484. http://eudml.org/doc/271633Google ScholarGoogle ScholarCross RefCross Ref
  39. Steven J Owen. 1998. A survey of unstructured mesh generation technology. IMR 239 (1998), 267.Google ScholarGoogle Scholar
  40. Steven Elliot Pav. 2003. Delaunay Refinement Algorithms. Ph.D. Dissertation. Carnegie Mellon University.Google ScholarGoogle Scholar
  41. Steven E. Pav and Noel J. Walkington. 2005. Delaunay Refinement by Corner Lopping. In Proceedings of the 14th International Meshing Roundtable, Byron W. Hanks (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg, 165--181.Google ScholarGoogle Scholar
  42. Ulrich Pinkall and Konrad Polthier. 1993. Computing discrete minimal surfaces and their conjugates. Experimental mathematics 2, 1 (1993), 15--36.Google ScholarGoogle Scholar
  43. Hartmut Prautzsch, Wolfgang Boehm, and Marco Paluszny. 2013. Bézier and B-spline techniques. Springer Science & Business Media.Google ScholarGoogle Scholar
  44. Alexander Rand. 2011a. Improved Examples of Non-Termination for Ruppert's Algorithm. arXiv:1103.3903 [cs.CG]Google ScholarGoogle Scholar
  45. Alexander Rand. 2011b. Where and How Chew's Second Delaunay Refinement Algorithm Works. In Proc. 23rd Canadian Conference on Computational Geometry.Google ScholarGoogle Scholar
  46. Ramsharan Rangarajan and Adrián J. Lew. 2014. Universal meshes: A method for triangulating planar curved domains immersed in nonconforming meshes. Int. J. Numer. Methods Eng. 98, 4 (2014), 236--264.Google ScholarGoogle ScholarCross RefCross Ref
  47. J. Ruppert. 1995. A Delaunay Refinement Algorithm for Quality 2-Dimensional Mesh Generation. Journal of Algorithms 18, 3 (1995), 548 -- 585.Google ScholarGoogle ScholarDigital LibraryDigital Library
  48. Teseo Schneider, Yixin Hu, Jérémie Dumas, Xifeng Gao, Daniele Panozzo, and Denis Zorin. 2018. Decoupling Simulation Accuracy from Mesh Quality. ACM Trans. Graph. 37, 6 (2018).Google ScholarGoogle ScholarDigital LibraryDigital Library
  49. Jonathan R. Shewchuk. 2002a. Delaunay refinement algorithms for triangular mesh generation. Computational Geometry 22, 1 (2002), 21 -- 74. 16th ACM Symp. Comput. Geom.Google ScholarGoogle ScholarDigital LibraryDigital Library
  50. Jonathan Richard Shewchuk. 2002b. What is a good linear element? Interpolation, Conditioning, and Quality Measures. In Proc. 11th Int. Meshing Roundtable. 115--126.Google ScholarGoogle Scholar
  51. Thomas Toulorge, Christophe Geuzaine, Jean-François Remacle, and Jonathan Lambrechts. 2013. Robust untangling of curvilinear meshes. J. Comput. Phys. 254 (2013).Google ScholarGoogle Scholar
  52. Godfried T Toussaint. 1984. A new linear algorithm for triangulating monotone polygons. Pattern Recognition Letters 2, 3 (1984), 155--158.Google ScholarGoogle ScholarDigital LibraryDigital Library
  53. Michael Turner, Joaquim Peiró, and David Moxey. 2018. Curvilinear mesh generation using a variational framework. Computer-Aided Design 103 (2018), 73--91.Google ScholarGoogle ScholarDigital LibraryDigital Library
  54. S.A. Vavasis. 1996. Stable finite elements for problems with wild coefficients. SIAM J. Numer. Anal. 33 (1996), 890--916.Google ScholarGoogle ScholarDigital LibraryDigital Library
  55. Z.J. Wang, Krzysztof Fidkowski, Rémi Abgrall, Francesco Bassi, Doru Caraeni, Andrew Cary, Herman Deconinck, Ralf Hartmann, Koen Hillewaert, H.T. Huynh, Norbert Kroll, Georg May, Per-Olof Persson, Bram van Leer, and Miguel Visbal. 2013. High-order CFD methods: current status and perspective. International Journal for Numerical Methods in Fluids 72, 8 (2013), 811--845.Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. Guaranteed-quality higher-order triangular meshing of 2D domains

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in

        Full Access

        • Published in

          cover image ACM Transactions on Graphics
          ACM Transactions on Graphics  Volume 40, Issue 4
          August 2021
          2170 pages
          ISSN:0730-0301
          EISSN:1557-7368
          DOI:10.1145/3450626
          Issue’s Table of Contents

          Copyright © 2021 ACM

          Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 19 July 2021
          Published in tog Volume 40, Issue 4

          Permissions

          Request permissions about this article.

          Request Permissions

          Check for updates

          Qualifiers

          • research-article

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader