skip to main content
research-article

End-to-end complex lens design with differentiate ray tracing

Authors Info & Claims
Published:19 July 2021Publication History
Skip Abstract Section

Abstract

Imaging systems have long been designed in separated steps: experience-driven optical design followed by sophisticated image processing. Although recent advances in computational imaging aim to bridge the gap in an end-to-end fashion, the image formation models used in these approaches have been quite simplistic, built either on simple wave optics models such as Fourier transform, or on similar paraxial models. Such models only support the optimization of a single lens surface, which limits the achievable image quality.

To overcome these challenges, we propose a general end-to-end complex lens design framework enabled by a differentiable ray tracing image formation model. Specifically, our model relies on the differentiable ray tracing rendering engine to render optical images in the full field by taking into account all on/off-axis aberrations governed by the theory of geometric optics. Our design pipeline can jointly optimize the lens module and the image reconstruction network for a specific imaging task. We demonstrate the effectiveness of the proposed method on two typical applications, including large field-of-view imaging and extended depth-of-field imaging. Both simulation and experimental results show superior image quality compared with conventional lens designs. Our framework offers a competitive alternative for the design of modern imaging systems.

Skip Supplemental Material Section

Supplemental Material

a71-sun.mp4
3450626.3459674.mp4

References

  1. Nick Antipa, Grace Kuo, Reinhard Heckel, Ben Mildenhall, Emrah Bostan, Ren Ng, and Laura Waller. 2018. DiffuserCam: lensless single-exposure 3D imaging. Optica 5, 1 (2018), 1--9.Google ScholarGoogle ScholarCross RefCross Ref
  2. Martin Arjovsky, Soumith Chintala, and Léon Bottou. 2017. Wasserstein Generative Adversarial Networks. In Proceedings of the 34th International Conference on Machine Learning - Volume 70 (Sydney, NSW, Australia) (ICML'17). JMLR.org, 214--223.Google ScholarGoogle Scholar
  3. Seung-Hwan Baek, Hayato Ikoma, Daniel S Jeon, Yuqi Li, Wolfgang Heidrich, Gordon Wetzstein, and Min H Kim. 2020. End-to-end hyperspectral-depth imaging with learned diffractive optics. arXiv preprint arXiv:2009.00463 (2020).Google ScholarGoogle Scholar
  4. Sai Bangaru, Tzu-Mao Li, and Frédo Durand. 2020. Unbiased Warped-Area Sampling for Differentiable Rendering. ACM Transactions on Graphics (TOG) 39, 6 (2020), 245:1--245:18.Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. V. Boominathan, J. K. Adams, J. T. Robinson, and A. Veeraraghavan. 2020. PhlatCam: Designed Phase-Mask Based Thin Lensless Camera. IEEE Transactions on Pattern Analysis andMachine Intelligence 42, 7 (2020), 1618--1629.Google ScholarGoogle ScholarCross RefCross Ref
  6. David J Brady, Michael E Gehm, Ronald A Stack, Daniel L Marks, David S Kittle, Dathon R Golish, EM Vera, and Steven D Feller. 2012. Multiscale gigapixel photography. Nature 486, 7403 (2012), 386.Google ScholarGoogle ScholarCross RefCross Ref
  7. W Thomas Cathey and Edward R Dowski. 2002. New paradigm for imaging systems. Applied Optics 41, 29 (2002), 6080--6092.Google ScholarGoogle ScholarCross RefCross Ref
  8. Ayan Chakrabarti. 2016. Learning Sensor Multiplexing Design through Back-propagation. In Advances in Neural Information Processing Systems, D. Lee, M. Sugiyama, U. Luxburg, I. Guyon, and R. Garnett (Eds.), Vol. 29. Curran Associates, Inc.Google ScholarGoogle Scholar
  9. Julie Chang and Gordon Wetzstein. 2019a. Deep Optics for Monocular Depth Estimation and 3D Object Detection. In Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV).Google ScholarGoogle ScholarCross RefCross Ref
  10. Julie Chang and Gordon Wetzstein. 2019b. Deep optics for monocular depth estimation and 3d object detection. In Proceedings of the IEEE/CVF International Conference on Computer Vision. 10193--10202.Google ScholarGoogle ScholarCross RefCross Ref
  11. Chen Chen, Qifeng Chen, Jia Xu, and Vladlen Koltun. 2018. Learning to See in the Dark. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2018).Google ScholarGoogle ScholarCross RefCross Ref
  12. Shane Colburn, Alan Zhan, and Arka Majumdar. 2018. Metasurface optics for full-color computational imaging. Science Advances 4, 2 (2018).Google ScholarGoogle Scholar
  13. Oliver Cossairt and Shree Nayar. 2010. Spectral focal sweep: Extended depth of field from chromatic aberrations. In IEEE International Conference on Computational Photography (ICCP). IEEE, 1--8.Google ScholarGoogle ScholarCross RefCross Ref
  14. O. Cossairt, C. Zhou, and S.K. Nayar. 2010. Diffusion Coding Photography for Extended Depth of Field. ACM Transactions on Graphics (TOG) (Aug 2010).Google ScholarGoogle Scholar
  15. O. S. Cossairt, D. Miau, and S. K. Nayar. 2011. Gigapixel Computational Imaging. In IEEE International Conference on Computational Photography (ICCP). 1--8.Google ScholarGoogle Scholar
  16. Geoffroi Côté, Jean-François Lalonde, and Simon Thibault. 2019. Extrapolating from lens design databases using deep learning. Opt. Express 27, 20 (Sep 2019), 28279--28292.Google ScholarGoogle ScholarCross RefCross Ref
  17. Geoffroi Côté, Jean-François Lalonde, and Simon Thibault. 2021. Deep learning-enabled framework for automatic lens design starting point generation. Opt. Express 29, 3 (Feb 2021), 3841--3854.Google ScholarGoogle ScholarCross RefCross Ref
  18. Paul E. Debevec and Jitendra Malik. 1997. Recovering High Dynamic Range Radiance Maps from Photographs. In Proceedings of the 24th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH '97). ACM Press/Addison-Wesley Publishing Co., USA, 369--378.Google ScholarGoogle Scholar
  19. Edward R Dowski and W Thomas Cathey. 1995. Extended depth of field through wave-front coding. Applied optics 34, 11 (1995), 1859--1866.Google ScholarGoogle Scholar
  20. Xiong Dun, Hayato Ikoma, Gordon Wetzstein, Zhanshan Wang, Xinbin Cheng, and Yifan Peng. 2020. Learned rotationally symmetric diffractive achromat for full-spectrum computational imaging. Optica 7, 8 (Aug 2020), 913--922.Google ScholarGoogle ScholarCross RefCross Ref
  21. FZ Fang, XD Zhang, A Weckenmann, GX Zhang, and C Evans. 2013. Manufacturing and measurement of freeform optics. CIRP Annals 62, 2 (2013), 823--846.Google ScholarGoogle ScholarCross RefCross Ref
  22. Angel Flores, Michael R. Wang, and Jame J. Yang. 2004. Achromatic hybrid refractive-diffractive lens with extended depth of focus. Applied Optics 43, 30 (Oct 2004), 5618--5630.Google ScholarGoogle ScholarCross RefCross Ref
  23. Grant R Fowles. 2012. Introduction to modern optics. Courier Dover Publications.Google ScholarGoogle Scholar
  24. Qi Guo, Iuri Frosio, Orazio Gallo, Todd Zickler, and Jan Kautz. 2018. Tackling 3D ToF Artifacts Through Learning and the FLAT Dataset. In The European Conference on Computer Vision (ECCV). Springer.Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Harel Haim, Shay Elmalem, Raja Giryes, Alex Bronstein, and Emanuel Marom. 2018. Depth Estimation From a Single Image Using Deep Learned Phase Coded Mask. IEEE Transactions on Computational Imaging 4 (2018), 298--310.Google ScholarGoogle ScholarCross RefCross Ref
  26. Samuel W Hasinoff and Kiriakos N Kutulakos. 2011. Light-efficient photography. IEEE Transactions on Pattern Analysis and Machine Intelligence 33, 11 (2011), 2203--2214.Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Felix Heide, Qiang Fu, Yifan Peng, and Wolfgang Heidrich. 2016. Encoded diffractive optics for full-spectrum computational imaging. Scientific Reports 6 (2016).Google ScholarGoogle Scholar
  28. Roarke Horstmeyer, Richard Y. Chen, Barbara Kappes, and Benjamin Judkewitz. 2017. Convolutional neural networks that teach microscopes how to image. ArXiv abs/1709.07223 (2017).Google ScholarGoogle Scholar
  29. Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A Efros. 2017. Image-to-Image Translation with Conditional Adversarial Networks. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2017).Google ScholarGoogle ScholarCross RefCross Ref
  30. Francis A Jenkins and Harvey E White. 2018. Fundamentals of optics. Tata McGraw-Hill Education.Google ScholarGoogle Scholar
  31. Daniel S. Jeon, Seung-Hwan Baek, Shinyoung Yi, Qiang Fu, Xiong Dun, Wolfgang Heidrich, and Min H. Kim. 2019. Compact Snapshot Hyperspectral Imaging with Diffracted Rotation. ACM Transactions on Graphics (TOG) 38, 4 (2019), 117:1--13.Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Michael Kellman, Emrah Bostan, Michael Chen, and Laura Waller. 2019. Data-Driven Design for Fourier Ptychographic Microscopy. In IEEE International Conference on Computational Photography (ICCP). IEEE, 1--8.Google ScholarGoogle Scholar
  33. Salman S. Khan, Adarsh V. R., Vivek Boominathan, Jasper Tan, Ashok Veeraraghavan, and Kaushik Mitra. 2019. Towards Photorealistic Reconstruction of Highly Multiplexed Lensless Images. In Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV).Google ScholarGoogle ScholarCross RefCross Ref
  34. Craig Kolb, Don Mitchell, and Pat Hanrahan. 1995. A realistic camera model for computer graphics. In Proceedings of the 22nd annual conference on Computer graphics and interactive techniques. 317--324.Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Alankar Kotwal, Anat Levin, and Ioannis Gkioulekas. 2020. Interferometric Transmission Probing with Coded Mutual Intensity. 39, 4, Article 74 (July 2020), 16 pages.Google ScholarGoogle Scholar
  36. Orest Kupyn, Volodymyr Budzan, Mykola Mykhailych, Dmytro Mishkin, and Jiri Matas. 2017. DeblurGAN: Blind Motion Deblurring Using Conditional Adversarial Networks. arXiv preprint arXiv:1711.07064 (2017).Google ScholarGoogle Scholar
  37. Orest Kupyn, Tetiana Martyniuk, Junru Wu, and Zhangyang Wang. 2019. DeblurGANv2: Deblurring (Orders-of-Magnitude) Faster and Better. In The IEEE International Conference on Computer Vision (ICCV).Google ScholarGoogle Scholar
  38. Anat Levin. 2010. Analyzing Depth from Coded Aperture Sets. In Computer Vision - ECCV 2010, Kostas Daniilidis, Petros Maragos, and Nikos Paragios (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 214--227.Google ScholarGoogle ScholarCross RefCross Ref
  39. Anat Levin, Rob Fergus, Frédo Durand, and William T. Freeman. 2007. Image and Depth from a Conventional Camera with a Coded Aperture. ACM Transactions on Graphics (TOG) 26, 3 (July 2007), 70--es.Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Anat Levin, Samuel W Hasinoff, Paul Green, Frédo Durand, and William T Freeman. 2009. 4D frequency analysis of computational cameras for depth of field extension. In ACM Transactions on Graphics (TOG), Vol. 28. ACM, 97.Google ScholarGoogle Scholar
  41. Zhiqiang Liu, Angel Flores, Michael R. Wang, and Jianwen J. Yang. 2007. Diffractive infrared lens with extended depth of focus. Optical Engineering 46, 1 (2007), 1 -- 9.Google ScholarGoogle ScholarCross RefCross Ref
  42. Daniel Malacara-HernáUndez and Zacarías Malacara-Hernández. 2016. Handbook of optical design. CRC Press.Google ScholarGoogle Scholar
  43. S. Mann and Rosalind W. Picard. 1994. Being 'undigital' with digital cameras: extending dynamic range by combining differently exposed pictures.Google ScholarGoogle Scholar
  44. Christopher A Metzler, Hayato Ikoma, Yifan Peng, and Gordon Wetzstein. 2020. Deep optics for single-shot high-dynamic-range imaging. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 1375--1385.Google ScholarGoogle ScholarCross RefCross Ref
  45. Mehjabin Monjur, Leonidas Spinoulas, Patrick R Gill, and David G Stork. 2015. Ultra-miniature, computationally efficient diffractive visual-bar-position sensor. In Proc. SensorComm. IEIFSA.Google ScholarGoogle Scholar
  46. Seungjun Nah, Tae Hyun Kim, and Kyoung Mu Lee. 2017. Deep multi-scale convolutional neural network for dynamic scene deblurring. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) 1, 2, 3.Google ScholarGoogle ScholarCross RefCross Ref
  47. S.K. Nayar, V. Branzoi, and T. Boult. 2004. Programmable Imaging using a Digital Micromirror Array. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) I, 436--443.Google ScholarGoogle Scholar
  48. Elias Nehme, Daniel Freedman, Racheli Gordon, Boris Ferdman, Tomer Michaeli, and Yoav Shechtman. 2019. Dense three dimensional localization microscopy by deep learning.Google ScholarGoogle Scholar
  49. Merlin Nimier-David, Delio Vicini, Tizian Zeltner, and Wenzel Jakob. 2019. Mitsuba 2: A Retargetable Forward and Inverse Renderer. ACM Transactions on Graphics (TOG) 38, 6 (Dec. 2019).Google ScholarGoogle ScholarDigital LibraryDigital Library
  50. Yifan Peng, Qilin Sun, Xiong Dun, Gordon Wetzstein, Wolfgang Heidrich, and Felix Heide. 2019. Learned Large Field-of-View Imaging with Thin-Plate Optics. ACM Transactions on Graphics (TOG) 38, 6, Article 219 (Nov. 2019), 14 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  51. E. Reinhard and K. Devlin. 2005. Dynamic range reduction inspired by photoreceptor physiology. IEEE Transactions on Visualization and Computer Graphics 11, 1 (2005), 13--24.Google ScholarGoogle ScholarDigital LibraryDigital Library
  52. M. Rouf, R. Mantiuk, W. Heidrich, M. Trentacoste, and C. Lau. 2011. Glare Encoding of High Dynamic Range Images. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).Google ScholarGoogle Scholar
  53. Christian J. Schuler, Harold Christopher Burger, Stefan Harmeling, and Bernhard Scholkopf. 2013. A Machine Learning Approach for Non-blind Image Deconvolution. In Proc. Computer Vision and Pattern Recognition.Google ScholarGoogle ScholarDigital LibraryDigital Library
  54. Yoav Shechtman, Lucien E Weiss, Adam S. Backer, Maurice Y. Lee, and W E Moerner. 2016. Multicolour localization microscopy by point-spread-function engineering. Nature photonics 10 (2016), 590--594.Google ScholarGoogle Scholar
  55. Yichang Shih, Brian Guenter, and Neel Joshi. 2012. Image enhancement using calibrated lens simulations. In European Conference on Computer Vision (ECCV). Springer, 42--56.Google ScholarGoogle ScholarDigital LibraryDigital Library
  56. Vincent Sitzmann, Steven Diamond, Yifan Peng, Xiong Dun, Stephen Boyd, Wolfgang Heidrich, Felix Heide, and Gordon Wetzstein. 2018. End-to-end optimization of optics and image processing for achromatic extended depth of field and super-resolution imaging. ACM Transactions on Graphics (TOG) 37, 4 (2018), 114.Google ScholarGoogle ScholarDigital LibraryDigital Library
  57. Warren J. Smith. 2005. Modern lens design. McGraw-Hill.Google ScholarGoogle Scholar
  58. David G Stork and Patrick R Gill. 2013. Lensless ultra-miniature CMOS computational imagers and sensors. Proc. SENSORCOMM (2013), 186--190.Google ScholarGoogle Scholar
  59. David G Stork and Patrick R Gill. 2014. Optical, mathematical, and computational foundations of lensless ultra-miniature diffractive imagers and sensors. International Journal on Advances in Systems and Measurements 7, 3 (2014), 4.Google ScholarGoogle Scholar
  60. Qilin Sun, Xiong Dun, Yifan Peng, and Wolfgang Heidrich. 2018. Depth and Transient Imaging With Compressive SPAD Array Cameras. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).Google ScholarGoogle ScholarCross RefCross Ref
  61. Qilin Sun, Ethan Tseng, Qiang Fu, Wolfgang Heidrich, and Felix Heide. 2020a. Learning Rank-1 Diffractive Optics for Single-Shot High Dynamic Range Imaging. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).Google ScholarGoogle ScholarCross RefCross Ref
  62. Qilin Sun, Jian Zhang, Xiong Dun, Bernard Ghanem, Yifan Peng, and Wolfgang Heidrich. 2020b. End-to-End Learned, Optically Coded Super-Resolution SPAD Camera. ACM Transactions on Graphics (TOG) 39, 2, Article 9 (March 2020), 14 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  63. Sara C Tucker, W Thomas Cathey, and Edward R Dowski. 1999. Extended depth of field and aberration control for inexpensive digital microscope systems. Optics Express 4, 11 (1999), 467--474.Google ScholarGoogle ScholarCross RefCross Ref
  64. Kartik Venkataraman, Dan Lelescu, Jacques Duparré, Andrew McMahon, Gabriel Molina, Priyam Chatterjee, Robert Mullis, and Shree Nayar. 2013. Picam:Anultra-thin high performance monolithic camera array. ACM Transactions on Graphics (TOG) 32, 6 (2013), 166.Google ScholarGoogle ScholarDigital LibraryDigital Library
  65. Yicheng Wu, Vivek Boominathan, Huaijin Chen, Aswin Sankaranarayanan, and Ashok Veeraraghavan. 2019a. PhaseCam3D - Learning Phase Masks for Passive Single View Depth Estimation. In IEEE International Conference on Computational Photography (ICCP).Google ScholarGoogle Scholar
  66. Y. Wu, V. Boominathan, H. Chen, A. Sankaranarayanan, and A. Veeraraghavan. 2019b. PhaseCam3D â€" Learning Phase Masks for Passive Single View Depth Estimation. In IEEE International Conference on Computational Photography (ICCP). IEEE Computer Society, Los Alamitos, CA, USA, 1--12.Google ScholarGoogle Scholar
  67. Y. Wu, F. Li, F. Willomitzer, A. Veeraraghavan, and O. Cossairt. 2020. WISHED: Wavefront imaging sensor with high resolution and depth ranging. In IEEE International Conference on Computational Photography (ICCP). 1--10.Google ScholarGoogle Scholar
  68. Li Xu, Jimmy SJ Ren, Ce Liu, and Jiaya Jia. 2014. Deep convolutional neural network for image deconvolution. In Advances in Neural Information Processing Systems. 1790--1798.Google ScholarGoogle ScholarDigital LibraryDigital Library
  69. Xiaoyun Yuan, Lu Fang, Qionghai Dai, David J Brady, and Yebin Liu. 2017. Multiscale gigapixel video: A cross resolution image matching and warping approach. In IEEE International Conference on Computational Photography (ICCP). IEEE, 1--9.Google ScholarGoogle ScholarCross RefCross Ref
  70. Cheng Zhang, Bailey Miller, Kai Yan, Ioannis Gkioulekas, and Shuang Zhao. 2020. Path-Space Differentiable Rendering. ACM Transactions on Graphics (TOG) 39, 4 (2020), 143:1--143:19.Google ScholarGoogle ScholarDigital LibraryDigital Library
  71. Cheng Zhang, Lifan Wu, Changxi Zheng, Ioannis Gkioulekas, Ravi Ramamoorthi, and Shuang Zhao. 2019. A Differential Theory of Radiative Transfer. ACM Transactions on Graphics (TOG) 38, 6 (2019), 227:1--227:16.Google ScholarGoogle ScholarDigital LibraryDigital Library
  72. Jiawei Zhang, Jinshan Pan, Wei-Sheng Lai, Rynson WH Lau, and Ming-Hsuan Yang. 2017. Learning fully convolutional networks for iterative non-blind deconvolution. (2017).Google ScholarGoogle Scholar
  73. Xuaner Zhang, Ren Ng, and Qifeng Chen. 2018. Single Image Reflection Separation with PerceptualLosses. In IEEE Conference on Computer Vision and Pattern Recognition.Google ScholarGoogle Scholar

Index Terms

  1. End-to-end complex lens design with differentiate ray tracing

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in

      Full Access

      • Published in

        cover image ACM Transactions on Graphics
        ACM Transactions on Graphics  Volume 40, Issue 4
        August 2021
        2170 pages
        ISSN:0730-0301
        EISSN:1557-7368
        DOI:10.1145/3450626
        Issue’s Table of Contents

        Copyright © 2021 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 19 July 2021
        Published in tog Volume 40, Issue 4

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader