skip to main content
research-article
Open Access

SANM: a symbolic asymptotic numerical solver with applications in mesh deformation

Published:19 July 2021Publication History
Skip Abstract Section

Abstract

Solving nonlinear systems is an important problem. Numerical continuation methods efficiently solve certain nonlinear systems. The Asymptotic Numerical Method (ANM) is a powerful continuation method that usually converges faster than Newtonian methods. ANM explores the landscape of the function by following a parameterized solution curve approximated with a high-order power series. Although ANM has successfully solved a few graphics and engineering problems, prior to our work, applying ANM to new problems required significant effort because the standard ANM assumes quadratic functions, while manually deriving the power series expansion for nonquadratic systems is a tedious and challenging task.

This paper presents a novel solver, SANM, that applies ANM to solve symbolically represented nonlinear systems. SANM solves such systems in a fully automated manner. SANM also extends ANM to support many nonquadratic operators, including intricate ones such as singular value decomposition. Furthermore, SANM generalizes ANM to support the implicit homotopy form. Moreover, SANM achieves high computing performance via optimized system design and implementation.

We deploy SANM to solve forward and inverse elastic force equilibrium problems and controlled mesh deformation problems with a few constitutive models. Our results show that SANM converges faster than Newtonian solvers, requires little programming effort for new problems, and delivers comparable or better performance than a hand-coded, specialized ANM solver. While we demonstrate on mesh deformation problems, SANM is generic and potentially applicable to many tasks.

Skip Supplemental Material Section

Supplemental Material

3450626.3459755.mp4

References

  1. Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al. 2016. Tensorflow: A system for large-scale machine learning. In 12th USENIX symposium on operating systems design and implementation (OSDI 16). 265--283.Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. H Abichou, H Zahrouni, and M Potier-Ferry. 2002. Asymptotic numerical method for problems coupling several nonlinearities. Computer Methods in Applied Mechanics and Engineering 191, 51--52 (2002), 5795--5810.Google ScholarGoogle ScholarCross RefCross Ref
  3. Eugene L Allgower and Kurt Georg. 2003. Introduction to numerical continuation methods. SIAM.Google ScholarGoogle Scholar
  4. L Azrar, EH Boutyour, and M Potier-Ferry. 2002. Non-linear forced vibrations of plates by an asymptotic-numerical method. Journal of Sound and Vibration 252, 4 (2002), 657--674.Google ScholarGoogle ScholarCross RefCross Ref
  5. L Azrar, B Cochelin, N Damil, and M Potier-Ferry. 1993. An asymptotic-numerical method to compute the postbuckling behaviour of elastic plates and shells. International journal for numerical methods in engineering 36, 8 (1993), 1251--1277.Google ScholarGoogle ScholarCross RefCross Ref
  6. JL Basdevant. 1972. The Padé approximation and its physical applications. Fortschritte der Physik 20, 5 (1972), 283--331.Google ScholarGoogle ScholarCross RefCross Ref
  7. Atilim Gunes Baydin, Barak A. Pearlmutter, Alexey Andreyevich Radul, and Jeffrey Mark Siskind. 2018. Automatic Differentiation in Machine Learning: a Survey. Journal of Machine Learning Research 18, 153 (2018), 1--43. http://jmlr.org/papers/v18/17-468.htmlGoogle ScholarGoogle ScholarDigital LibraryDigital Library
  8. Jan Bender, Matthias Müller, Miguel A Otaduy, Matthias Teschner, and Miles Macklin. 2014. A survey on position-based simulation methods in computer graphics. In Computer graphics forum, Vol. 33. Wiley Online Library, 228--251.Google ScholarGoogle Scholar
  9. Javier Bonet and Richard D. Wood. 2008. Nonlinear Continuum Mechanics for Finite Element Analysis (2 ed.). Cambridge University Press. Google ScholarGoogle ScholarCross RefCross Ref
  10. Joseph-Frédéric Bonnans, Jean Charles Gilbert, Claude Lemaréchal, and Claudia A Sagastizábal. 2006. Numerical optimization: theoretical and practical aspects. Springer Science & Business Media.Google ScholarGoogle Scholar
  11. Sofien Bouaziz, Sebastian Martin, Tiantian Liu, Ladislav Kavan, and Mark Pauly. 2014. Projective dynamics: fusing constraint projections for fast simulation. ACM Transactions on Graphics (TOG) 33, 4 (2014), 1--11.Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. EH Boutyour, H Zahrouni, M Potier-Ferry, and M Boudi. 2004. Bifurcation points and bifurcated branches by an asymptotic numerical method and Padé approximants. Internat. J. Numer Methods Engrg. 60, 12 (2004), 1987--2012.Google ScholarGoogle ScholarCross RefCross Ref
  13. Richard P Brent. 2013. Algorithms for minimization without derivatives. Courier Corporation.Google ScholarGoogle Scholar
  14. Richard P Brent and Hsiang T Kung. 1978. Fast algorithms for manipulating formal power series. Journal of the ACM (JACM) 25, 4 (1978), 581--595.Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Isaac Chao, Ulrich Pinkall, Patrick Sanan, and Peter Schröder. 2010. A simple geometric model for elastic deformations. ACM transactions on graphics (TOG) 29, 4 (2010), 1--6.Google ScholarGoogle Scholar
  16. Isabelle Charpentier, Arnaud Lejeune, and Michel Potier-Ferry. 2008. The diamant approach for an efficient automatic differentiation of the asymptotic numerical method. In Advances in automatic differentiation. Springer, 139--149.Google ScholarGoogle Scholar
  17. Tianqi Chen, Thierry Moreau, Ziheng Jiang, Lianmin Zheng, Eddie Yan, Haichen Shen, Meghan Cowan, Leyuan Wang, Yuwei Hu, Luis Ceze, et al. 2018. TVM: An automated end-to-end optimizing compiler for deep learning. In 13th USENIX Symposium on Operating Systems Design and Implementation OSDI 18). 578--594.Google ScholarGoogle Scholar
  18. Tianqi Chen, Bing Xu, Chiyuan Zhang, and Carlos Guestrin. 2016. Training deep nets with sublinear memory cost. arXiv preprint arXiv:1604.06174 (2016).Google ScholarGoogle Scholar
  19. Xiang Chen, Changxi Zheng, Weiwei Xu, and Kun Zhou. 2014. An asymptotic numerical method for inverse elastic shape design. ACM Transactions on Graphics (TOG) 33, 4 (2014), 1--11.Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Min Gyu Choi and Hyeong-Seok Ko. 2005. Modal warping: Real-time simulation of large rotational deformation and manipulation. IEEE Transactions on Visualization and Computer Graphics 11, 1 (2005), 91--101.Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Bruno Cochelin.1994. A path-following technique via an asymptotic-numerical method. Computers & structures 53, 5 (1994), 1181--1192.Google ScholarGoogle Scholar
  22. Bruno Cochelin, Noureddine Damil, and Michel Potier-Ferry. 1994a. Asymptotic-numerical methods and Padé approximants for non-linear elastic structures. International journal for numerical methods in engineerings 37, 7 (1994), 1187--1213.Google ScholarGoogle ScholarCross RefCross Ref
  23. Bruno Cochelin, Noureddine Damil, and Michel Potier-Ferry. 1994b. The asymptotic-numerical method: an efficient perturbation technique for nonlinear structural mechanics. Revue européenne des éléments finis 3, 2 (1994), 281--297.Google ScholarGoogle Scholar
  24. Noureddine Damil and Michel Potier-Ferry. 1990. A new method to compute perturbed bifurcations: application to the buckling of imperfect elastic structures. International Journal of Engineering Science 28, 9 (1990), 943--957.Google ScholarGoogle ScholarCross RefCross Ref
  25. EM Daya and M Potier-Ferry. 2001. A numerical method for nonlinear eigenvalue problems application to vibrations of viscoelastic structures. Computers & Structures 79, 5 (2001), 533--541.Google ScholarGoogle ScholarCross RefCross Ref
  26. Simon Duenser, Roi Poranne, Bernhard Thomaszewski, and Stelian Coros. 2020. Robo-Cut: hot-wire cutting with robot-controlled flexible rods. ACM Transactions on Graphics (TOG) 39, 4 (2020), 98--1.Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Ahmad Elhage-Hussein, Michel Potier-Ferry, and Noureddine Damil. 2000. A numerical continuation method based on Padé approximants. International Journal of Solids and Structures 37, 46--47 (2000), 6981--7001.Google ScholarGoogle ScholarCross RefCross Ref
  28. Benjamin Gilles, Guillaume Bousquet, Francois Faure, and Dinesh K Pai. 2011. Frame-based elastic models. ACM transactions on graphics (TOG) 30, 2 (2011), 1--12.Google ScholarGoogle Scholar
  29. Gene H Golub and TN Robertson. 1967. A generalized Bairstow algorithm. Commun. ACM 10, 6 (1967), 371--373.Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Andreas Griewank and Andrea Walther. 2008. Evaluating derivatives: principles and techniques of algorithmic differentiation. SIAM.Google ScholarGoogle Scholar
  31. Gaël Guennebaud, Benoît Jacob, et al. 2010. Eigen v3. http://eigen.tuxfamily.org.Google ScholarGoogle Scholar
  32. Louis Guillot, Bruno Cochelin, and Christophe Vergez. 2019. A generic and efficient Taylor series-based continuation method using a quadratic recast of smooth nonlinear systems. International Journal for numerical methods in Engineering 119, 4 (2019), 261--280.Google ScholarGoogle ScholarCross RefCross Ref
  33. M Hromčík and M Šebekt. 1999. New algorithm for polynomial matrix determinant based on FFT. In 1999 European Control Conference (ECC). IEEE, 4173--4177.Google ScholarGoogle ScholarCross RefCross Ref
  34. Norman P. Jouppi, Cliff Young, Nishant Patil, David Patterson, Gaurav Agrawal, Raminder Bajwa, Sarah Bates, Suresh Bhatia, Nan Boden, Al Borchers, Rick Boyle, Pierre-luc Cantin, Clifford Chao, Chris Clark, Jeremy Coriell, Mike Daley, Matt Dau, Jeffrey Dean, Ben Gelb, Tara Vazir Ghaemmaghami, Rajendra Gottipati, William Gulland, Robert Hagmann, C. Richard Ho, Doug Hogberg, John Hu, Robert Hundt, Dan Hurt, Julian Ibarz, Aaron Jaffey, Alek Jaworski, Alexander Kaplan, Harshit Khaitan, Daniel Killebrew, Andy Koch, Naveen Kumar, Steve Lacy, James Laudon, James Law, Diemthu Le, Chris Leary, Zhuyuan Liu, Kyle Lucke, Alan Lundin, Gordon MacKean, Adriana Maggiore, Maire Mahony, Kieran Miller, Rahul Nagarajan, Ravi Narayanaswami, Ray Ni, Kathy Nix, Thomas Norrie, Mark Omernick, Narayana Penukonda, Andy Phelps, Jonathan Ross, Matt Ross, Amir Salek, Emad Samadiani, Chris Severn, Gregory Sizikov, Matthew Snelham, Jed Souter, Dan Steinberg, Andy Swing, Mercedes Tan, Gregory Thorson, Bo Tian, Horia Toma, Erick Tuttle, Vijay Vasudevan, Richard Walter, Walter Wang, Eric Wilcox, and Doe Hyun Yoon. 2017. In-Datacenter Performance Analysis of a Tensor Processing Unit. In Proceedings of the 44th Annual International Symposium on Computer Architecture (Toronto, ON, Canada) (ISCA '17). Association for Computing Machinery, New York, NY, USA, 1--12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Theodore Kim and David Eberle. 2020. Dynamic deformables: implementation and production practicalities. In ACM SIGGRAPH 2020 Courses. 1--182.Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Theodore Kim and Doug L James. 2009. Skipping steps in deformable simulation with online model reduction. In ACM SIGGRAPH Asia 2009 papers. 1--9.Google ScholarGoogle Scholar
  37. Chris Lattner and Vikram Adve. 2004. LLVM: A compilation framework for lifelong program analysis & transformation. In International Symposium on Code Generation and Optimization, 2004. CGO 2004. IEEE, 75--86.Google ScholarGoogle ScholarCross RefCross Ref
  38. Chris Lattner, Mehdi Amini, Uday Bondhugula, Albert Cohen, Andy Davis, Jacques Pienaar, River Riddle, Tatiana Shpeisman, Nicolas Vasilache, and Oleksandr Zinenko. 2020. MLIR: A compiler infrastructure for the end of Moore's law. arXiv preprint arXiv:2002.11054 (2020).Google ScholarGoogle Scholar
  39. Arnaud Lazarus, JT Miller, and Pedro M Reis. 2013. Continuation of equilibria and stability of slender elastic rods using an asymptotic numerical method. Journal of the Mechanics and Physics of Solids 61, 8 (2013), 1712--1736.Google ScholarGoogle ScholarCross RefCross Ref
  40. Arnaud Lejeune, Fabien Béchet, Hakim Boudaoud, Norman Mathieu, and Michel Potier-Ferry. 2012. Object-oriented design to automate a high order non-linear solver based on asymptotic numerical method. Advances in Engineering Software 48 (2012), 70--88.Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. Hai-Jun Liao, Jin-Guo Liu, Lei Wang, and Tao Xiang. 2019. Differentiable programming tensor networks. Physical Review X 9, 3 (2019), 031041.Google ScholarGoogle Scholar
  42. Alex Limpaecher, Nicolas Feltman, Adrien Treuille, and Michael Cohen. 2013. Real-time drawing assistance through crowdsourcing. ACM Transactions on Graphics (TOG) 32, 4 (2013), 1--8.Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. A Najah, B Cochelin, N Damil, and M Potier-Ferry. 1998. A critical review of asymptotic numerical methods. Archives of Computational Methods in Engineering 5, 1 (1998), 31--50.Google ScholarGoogle ScholarCross RefCross Ref
  44. Théodore Papadopoulo and Manolis IA Lourakis. 2000. Estimating the jacobian of the singular value decomposition: Theory and applications. In European Conference on Computer Vision. Springer, 554--570.Google ScholarGoogle ScholarCross RefCross Ref
  45. Steven Roman. 1980. The formula of Fàa di Bruno. The American Mathematical Monthly 87, 10 (1980), 805--809.Google ScholarGoogle ScholarCross RefCross Ref
  46. Matthias Seeger, Asmus Hetzel, Zhenwen Dai, Eric Meissner, and Neil D Lawrence. 2017. Auto-differentiating linear algebra. arXiv preprint arXiv:1710.08717 (2017).Google ScholarGoogle Scholar
  47. Anna Shtengel, Roi Poranne, Olga Sorkine-Hornung, Shahar Z Kovalsky, and Yaron Lipman. 2017. Geometric optimization via composite majorization. ACM Trans. Graph. 36, 4 (2017), 38--1.Google ScholarGoogle ScholarDigital LibraryDigital Library
  48. Eftychios Sifakis and Jernej Barbic. 2012. FEM simulation of 3D deformable solids: a practitioner's guide to theory, discretization and model reduction. In Acm siggraph 2012 courses. 1--50.Google ScholarGoogle Scholar
  49. Breannan Smith, Fernando De Goes, and Theodore Kim. 2019. Analytic Eigensystems for Isotropic Distortion Energies. ACM Transactions on Graphics (TOG) 38, 1 (2019), 1--15.Google ScholarGoogle ScholarDigital LibraryDigital Library
  50. Olga Sorkine and Marc Alexa. 2007. As-rigid-as-possible surface modeling. In Symposium on Geometry processing, Vol. 4. 109--116.Google ScholarGoogle ScholarDigital LibraryDigital Library
  51. Theano Development Team. 2016. Theano: A Python framework for fast computation of mathematical expressions. arXiv e-prints abs/1605.02688 (May 2016). http://arxiv.org/abs/1605.02688Google ScholarGoogle Scholar
  52. Joshua Trzasko and Armando Manduca. 2008. Highly Undersampled Magnetic Resonance Image Reconstruction via Homotopic l0-Minimization. IEEE Transactions on Medical imaging 28, 1 (2008), 106--121.Google ScholarGoogle ScholarCross RefCross Ref
  53. Nobuyuki Umetani, Danny M Kaufman, Takeo Igarashi, and Eitan Grinspun. 2011. Sensitive couture for interactive garment modeling and editing. ACM Trans. Graph. 30, 4 (2011), 90.Google ScholarGoogle ScholarDigital LibraryDigital Library
  54. KangKang Yin, Stelian Coros, Philippe Beaudoin, and Michiel van de Panne. 2008. Continuation methods for adapting simulated skills. In ACM SIGGRAPH 2008 papers. 1--7.Google ScholarGoogle Scholar
  55. H Zahrouni, B Cochelin, and M Potier-Ferry. 1999. Computing finite rotations of shells by an asymptotic-numerical method. Computer methods in applied mechanics and engineering 175, 1--2 (1999), 71--85.Google ScholarGoogle Scholar

Index Terms

  1. SANM: a symbolic asymptotic numerical solver with applications in mesh deformation

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in

      Full Access

      • Published in

        cover image ACM Transactions on Graphics
        ACM Transactions on Graphics  Volume 40, Issue 4
        August 2021
        2170 pages
        ISSN:0730-0301
        EISSN:1557-7368
        DOI:10.1145/3450626
        Issue’s Table of Contents

        Copyright © 2021 Owner/Author

        Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses, contact the Owner/Author.

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 19 July 2021
        Published in tog Volume 40, Issue 4

        Check for updates

        Qualifiers

        • research-article

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader