skip to main content
research-article
Public Access

Guaranteed globally injective 3D deformation processing

Authors Info & Claims
Published:19 July 2021Publication History
Skip Abstract Section

Abstract

We extend recent advances in the numerical time-integration of contacting elastodynamics [Li et al. 2020] to build a new framework, called Injective Deformation Processing (IDP), for the robust solution of a wide range of mesh deformation problems requiring injectivity. IDP solves challenging 3D (and 2D) geometry processing and animation tasks on meshes, via artificial time integration, with guarantees of both non-inversion and non-overlap. To our knowledge IDP is the first framework for 3D deformation processing that can efficiently guarantee globally injective deformation without geometric locking. We demonstrate its application on a diverse set of problems and show its significant improvement over state-of-the-art for globally injective 3D deformation.

Skip Supplemental Material Section

Supplemental Material

a75-fang.mp4
3450626.3459757.mp4

References

  1. Marc Alexa, Daniel Cohen-Or, and David Levin. 2000. As-rigid-as-possible shape interpolation. In Proceedings of the 27th annual conference on Computer graphics and interactive techniques. 157--164.Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. U.M. Ascher and L.R. Petzold. 1998. Computer Methods for Ordinary Differential Equations and Differential-Algebraic Equations. SIAM.Google ScholarGoogle Scholar
  3. David Baraff, Andrew Witkin, and Michael Kass. 2003. Untangling cloth. ACM Trans. Graph. (TOG) 22, 3 (2003), 862--870.Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Ilya Baran and Jaakko Lehtinen. 2009. Notes on Inflating Curves. (2009).Google ScholarGoogle Scholar
  5. Sofien Bouaziz, Mario Deuss, Yuliy Schwartzburg, Thibaut Weise, and Mark Pauly. 2012. Shape-up: Shaping discrete geometry with projections. In Computer Graphics Forum, Vol. 31. Wiley Online Library, 1657--1667.Google ScholarGoogle Scholar
  6. Sofien Bouaziz, Sebastian Martin, Tiantian Liu, Ladislav Kavan, and Mark Pauly. 2014. Projective dynamics: Fusing constraint projections for fast simulation. ACM Trans. Graph. (TOG) 33, 4 (2014), 1--11. Robert Bridson, Ronald Fedkiw, and John Anderson. 2002. Robust treatment of collisions, contact and friction for cloth animation. In Proceedings of the 29th annual conference on Computer graphics and interactive techniques. 594--603.Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Tyson Brochu and Robert Bridson. 2009. Robust topological operations for dynamic explicit surfaces. SIAM Journal on Scientific Computing 31, 4 (2009), 2472--2493.Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Thomas Buffet, Damien Rohmer, Loïc Barthe, Laurence Boissieux, and Marie-Paule Cani. 2019. Implicit untangling: a robust solution for modeling layered clothing. ACM Trans. Graph. (TOG) 38, 4 (2019), 1--12.Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Yanqing Chen, Timothy A Davis, William W Hager, and Sivasankaran Rajamanickam. 2008. Algorithm 887: CHOLMOD, supernodal sparse Cholesky factorization and update/downdate. ACM Trans. on Math. Software (TOMS) 35, 3 (2008).Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Xingyi Du, Noam Aigerman, Qingnan Zhou, Shahar Z. Kovalsky, Yajie Yan, Danny M. Kaufman, and Tao Ju. 2020. Lifting Simplices to Find Injectivity. ACM Trans. Graph. (2020).Google ScholarGoogle Scholar
  11. Fionn Dunne and Nik Petrinic. 2005. Introduction to computational plasticity. Oxford University Press on Demand.Google ScholarGoogle Scholar
  12. Y. Fang, M. Li, M. Gao, and C. Jiang. 2019. Silly rubber: an implicit material point method for simulating non-equilibrated viscoelastic and elastoplastic solids. ACM Trans. Graph. (TOG) 38, 4 (2019), 1--13.Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. M. Gao, A. P. Tampubolon, C. Jiang, and E. Sifakis. 2017. An adaptive generalized interpolation material point method for simulating elastoplastic materials. ACM Trans. Graph. (TOG) 36, 6 (2017), 223.Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Eitan Grinspun, Anil N Hirani, Mathieu Desbrun, and Peter Schröder. 2003. Discrete shells. In Proceedings of the 2003 ACM SIGGRAPH/Eurographics symposium on Computer animation. Citeseer, 62--67.Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Gaël Guennebaud, Benoît Jacob, et al. 2010. Eigen v3.Google ScholarGoogle Scholar
  16. David Harmon, Daniele Panozzo, Olga Sorkine, and Denis Zorin. 2011. Interference-aware geometric modeling. ACM Trans. Graph. (TOG) 30, 6 (2011), 1--10.Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. David Harmon, Etienne Vouga, Rasmus Tamstorf, and Eitan Grinspun. 2008. Robust treatment of simultaneous collisions. In ACM SIGGRAPH 2008 papers. 1--4.Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Takeo Igarashi, Tomer Moscovich, and John F Hughes. 2005. As-rigid-as-possible shape manipulation. ACM Trans. Graph. (TOG) 24, 3 (2005), 1134--1141.Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Zhongshi Jiang, Scott Schaefer, and Daniele Panozzo. 2017. Simplicial complex augmentation framework for bijective maps. ACM Trans. Graph. 36, 6 (2017).Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Shahar Z. Kovalsky, Noam Aigerman, Ronen Basri, and Yaron Lipman. 2015. Large-scale bounded distortion mappings. ACM Trans. Graph. (proceedings of ACM SIGGRAPH Asia) 34, 6 (2015).Google ScholarGoogle Scholar
  21. Shahar Z. Kovalsky, Meirav Galun, and Yaron Lipman. 2016. Accelerated Quadratic Proxy for Geometric Optimization. ACM Trans. Graph. (SIGGRAPH 2016) (2016).Google ScholarGoogle Scholar
  22. Minchen Li, Zachary Ferguson, Teseo Schneider, Timothy Langlois, Denis Zorin, Daniele Panozzo, Chenfanfu Jiang, and Danny M. Kaufman. 2020. Incremental Potential Contact: Intersection- and Inversion-free Large Deformation Dynamics. ACM Trans. Graph. 39, 4 (2020).Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Minchen Li, Danny M Kaufman, and Chenfanfu Jiang. 2021. Codimensional Incremental Potential Contact. ACM Trans. Graph. (TOG) 40, 4 (2021).Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Minchen Li, Danny M Kaufman, Vladimir G Kim, Justin Solomon, and Alla Sheffer. 2018a. Optcuts: joint optimization of surface cuts and parameterization. ACM Trans. Graph. (TOG) 37, 6 (2018), 1--13.Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Minchen Li, Alla Sheffer, Eitan Grinspun, and Nicholas Vining. 2018b. FoldSketch: Enriching Garments with Physically Reproducible Folds. ACM Trans. Graph. (TOG). 37, 4 (2018). Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Marek Krzysztof Misztal and Jakob Andreas Bærentzen. 2012. Topology-Adaptive Interface Tracking Using the Deformable Simplicial Complex. ACM Trans. Graph. (2012).Google ScholarGoogle Scholar
  27. Patrick Mullen, Alexander McKenzie, Yiying Tong, and Mathieu Desbrun. 2007. A variational approach to Eulerian geometry processing. ACM Trans. Graph. (TOG) 26, 3 (2007), 66--es.Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Matthias Müller, Nuttapong Chentanez, Tae-Yong Kim, and Miles Macklin. 2015. Air meshes for robust collision handling. ACM Trans. Graph. (TOG) 34, 4 (2015), 1--9.Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Raymond W Ogden. 1997. Non-linear elastic deformations. Courier Corporation.Google ScholarGoogle Scholar
  30. Stéphane Pagano and Pierre Alart. 2008. Self-contact and fictitious domain using a difference convex approach. Int. J. for Numer. Meth. in Eng. 75 (07 2008).Google ScholarGoogle ScholarCross RefCross Ref
  31. Leonardo Sacht, Etienne Vouga, and Alec Jacobson. 2015. Nested cages. ACM Trans. Graph. (TOG) 34, 6 (2015), 1--14.Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Christian Schüller, Ladislav Kavan, Daniele Panozzo, and Olga Sorkine-Hornung. 2013. Locally injective mappings. In Computer Graphics Forum, Vol. 32. Wiley Online Library, 125--135.Google ScholarGoogle Scholar
  33. Hang Si. 2015. TetGen, a Delaunay-based quality tetrahedral mesh generator. ACM Transactions on Mathematical Software (TOMS) 41, 2 (2015), 1--36.Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Jason Smith and Scott Schaefer. 2015. Bijective parameterization with free boundaries. ACM Trans. Graph. (TOG) 34, 4 (2015), 1--9.Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Olga Sorkine and Marc Alexa. 2007. As-rigid-as-possible surface modeling. In Symposium on Geometry processing, Vol. 4. 109--116.Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Jian-Ping Su, Chunyang Ye, Ligang Liu, and Xiao-Ming Fu. 2020. Efficient bijective parameterizations. ACM Trans. Graph. (TOG) 39, 4 (2020), 111--1.Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Pascal Volino and Nadia Magnenat-Thalmann. 2006. Resolving surface collisions through intersection contour minimization. ACM Trans. Graph. (TOG) 25, 3 (2006).Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Martin Wicke, Hermes Lanker, and Markus Gross. 2006. Untangling cloth with boundaries. In Proc. of Vision, Modeling, and Visualization. 349--356. Audrey Wong, David Eberle, and Theodore Kim. 2018. Clean cloth inputs: Removing character self-intersections with volume simulation. In ACM SIGGRAPH 2018 Talks.Google ScholarGoogle Scholar
  39. Juntao Ye, Guanghui Ma, Liguo Jiang, Lan Chen, Jituo Li, Gang Xiong, Xiaopeng Zhang, and Min Tang. 2017. A unified cloth untangling framework through discrete collision detection. In Computer Graphics Forum, Vol. 36. Wiley Online Library, 217--228.Google ScholarGoogle Scholar
  40. Juntao Ye, Timo R Nyberg, and Gang Xiong. 2015. Fast discrete intersection detection for cloth penetration resolution. In 2015 IEEE International Conference on Multimedia Big Data. IEEE, 352--357.Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. Yufeng Zhu, Robert Bridson, and Danny M. Kaufman. 2018. Blended Cured Quasi-Newton for Distortion Optimization. ACM Trans. Graph. (SIGGRAPH 2018) (2018).Google ScholarGoogle Scholar

Index Terms

  1. Guaranteed globally injective 3D deformation processing

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in

      Full Access

      • Published in

        cover image ACM Transactions on Graphics
        ACM Transactions on Graphics  Volume 40, Issue 4
        August 2021
        2170 pages
        ISSN:0730-0301
        EISSN:1557-7368
        DOI:10.1145/3450626
        Issue’s Table of Contents

        Copyright © 2021 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 19 July 2021
        Published in tog Volume 40, Issue 4

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader