skip to main content
research-article
Open Access

A fitted radiance and attenuation model for realistic atmospheres

Published:19 July 2021Publication History
Skip Abstract Section

Abstract

We present a fitted model of sky dome radiance and attenuation for realistic terrestrial atmospheres. Using scatterer distribution data from atmospheric measurement data, our model considerably improves on the visual realism of existing analytical clear sky models, as well as of interactive methods that are based on approximating atmospheric light transport. We also provide features not found in fitted models so far: radiance patterns for post-sunset conditions, in-scattered radiance and attenuation values for finite viewing distances, an observer altitude resolved model that includes downward-looking viewing directions, as well as polarisation information. We introduce a fully spherical model for in-scattered radiance that replaces the family of hemispherical functions originally introduced by Perez et al., and which was extended for several subsequent analytical models: our model relies on reference image compression via tensor decomposition instead.

Skip Supplemental Material Section

Supplemental Material

3450626.3459758.mp4

References

  1. G. Anderson, Shepard Clough, F. Kneizys, J. Chetwynd, and Eric Shettle. 1986. AFGL Atmospheric Constituent Profiles (0.120km). (05 1986), 46.Google ScholarGoogle Scholar
  2. Barry A. Bodhaine, Norman B. Wood, Ellsworth G. Dutton, and James R. Slusser. 1999. On Rayleigh Optical Depth Calculations. Journal of Atmospheric and Oceanic Technology 16, 11 (1999), 1854--1861. <1854:ORODC>2.0.CO;2 arXiv:https://doi.org/10.1175/1520-0426(1999)016<1854:ORODC>2.0.CO;2 Google ScholarGoogle ScholarCross RefCross Ref
  3. Eric Bruneton. 2016. A qualitative and quantitative evaluation of 8 clear sky models. IEEE transactions on visualization and computer graphics 23, 12 (2016), 2641--2655.Google ScholarGoogle Scholar
  4. Eric Bruneton and Fabrice Neyret. 2008. Precomputed atmospheric scattering. In Computer graphics forum, Vol. 27. Wiley Online Library, 1079--1086.Google ScholarGoogle Scholar
  5. Chaos Czech a.s. 2021. Corona Renderer. https://corona-renderer.com/.Google ScholarGoogle Scholar
  6. C. Emde, R. Buras-Schnell, A. Kylling, B. Mayer, J. Gasteiger, U. Hamann, J. Kylling, B. Richter, C. Pause, T. Dowling, and L. Bugliaro. 2016. The libRadtran software package for radiative transfer calculations (version 2.0.1). Geoscientific Model Development 9, 5 (2016), 1647--1672. Google ScholarGoogle ScholarCross RefCross Ref
  7. V. Gorshelev, A. Serdyuchenko, M. Weber, W. Chehade, and J. P. Burrows. 2014. High spectral resolution ozone absorption cross-sections - Part 1: Measurements, data analysis and comparison with previous measurements around 293 K. Atmospheric Measurement Techniques 7, 2 (2014), 609--624. Google ScholarGoogle ScholarCross RefCross Ref
  8. David Guimera, Diego Gutierrez, and Adrián Jarabo. 2018. A Physically-Based Spatio-Temporal Sky Model. In Spanish Computer Graphics Conference (CEIG), Ignacio García-Fernández and Carlos Ureña (Eds.). The Eurographics Association. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Jörg Haber, Marcus Magnor, and Hans-Peter Seidel. 2005. Physically-based simulation of twilight phenomena. ACM Transactions on Graphics 24 (October 2005), 1353--1373. Issue 4. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Miles Hansard. 2019. Fast Synthesis of Atmospheric Image Effects. In European Conference on Visual Media Production (London, United Kingdom) (CVMP '19). Association for Computing Machinery, New York, NY, USA, Article 13, 10 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. L. G. Henyey and J. L. Greenstein. 1941. Diffuse radiation in the Galaxy. Astrophysical Journal 93 (Jan 1941), 70--83. Google ScholarGoogle ScholarCross RefCross Ref
  12. M. Hess, P. Koepke, and I. Schult. 1998. Optical Properties of Aerosols and Clouds: The Software Package OPAC. Bulletin of the American Meteorological Society 79, 5 (1998), 831--844. <0831:OPOAAC>2.0.CO;2 arXiv:https://doi.org/10.1175/1520-0477(1998)079<0831:OPOAAC>2.0.CO;2 Google ScholarGoogle ScholarCross RefCross Ref
  13. Sébastien Hillaire. 2020. A Scalable and Production Ready Sky and Atmosphere Rendering Technique. Comput. Graph. Forum 39, 4 (2020), 13--22.Google ScholarGoogle ScholarCross RefCross Ref
  14. Lukas Hošek and Alexander Wilkie. 2012. An analytic model for full spectral sky-dome radiance. ACM Trans. Graph 31, 4 (2012), 95. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Lukas Hošek and Alexander Wilkie. 2013. Adding a solar radiance function to the Hošek-Wilkie skylight model. IEEE Computer Graphics and Applications 33, 3 (2013), 44--52. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. E. O. Hulburt. 1953. Explanation of the brightness and color of the sky, particularly the twilight sky. J. Opt. Soc. Am. 43 (1953), 113--118.Google ScholarGoogle ScholarCross RefCross Ref
  17. AK Kaifel, M Felder, C DeClercq, and J-C Lambert. 2012. New dynamic NNORSY ozone profile climatology. Atmospheric Measurement Techniques Discussions 5, 1 (2012), 775--812.Google ScholarGoogle Scholar
  18. Joseph T. Kider, Jr., Daniel Knowlton, Jeremy Newlin, Yining Karl Li, and Donald P. Greenberg. 2014. A Framework for the Experimental Comparison of Solar and Skydome Illumination. ACM Trans. Graph. 33, 6, Article 180 (Nov. 2014), 12 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. T. Kolda and B. Bader. 2009. Tensor Decompositions and Applications. SIAM Rev. 51, 3 (2009), 455--500.Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Peter Kutz. 2013. Sky Renderer project blog. http://skyrenderer.blogspot.com. Accessed: 2015-12-31.Google ScholarGoogle Scholar
  21. Raymond L. Lee, Wolfgang Meyer, and Goetz Hoeppe. 2011. Atmospheric ozone and colors of the Antarctic twilight sky. Applied Optics 50, 28 (2011), 162--171.Google ScholarGoogle ScholarCross RefCross Ref
  22. Christian Mätzler. 2002. MATLAB Functions for Mie Scattering and Absorption. Research report 2002-8, Institut für Angewandte Physik, Universität Bern, Switzerland (2002). http://www.iap.unibe.ch/publications/download/201/en/Google ScholarGoogle Scholar
  23. Bailey Miller, Iliyan Georgiev, and Wojciech Jarosz. 2019. A null-scattering path integral formulation of light transport. ACM Transactions on Graphics (TOG) 38, 4 (2019), 1--13.Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Merlin Nimier-David, Delio Vicini, Tizian Zeltner, and Wenzel Jakob. 2019. Mitsuba 2: A Retargetable Forward and Inverse Renderer. ACM Trans. Graph. 38, 6, Article 203 (Nov. 2019), 17 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Tomoyuki Nishita, Yoshinori Dobashi, and Eihachiro Nakamae. 1996. Display of clouds taking into account multiple anisotropic scattering and sky light. In Proceedings of the 23rd annual conference on Computer graphics and interactive techniques. 379--386.Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Tomoyuki Nishita, Takao Sirai, Katsumi Tadamura, and Eihachiro Nakamae. 1993. Display of the earth taking into account atmospheric scattering. In Proceedings of the 20th annual conference on Computer graphics and interactive techniques (Anaheim, CA) (SIGGRAPH '93). ACM, New York, NY, USA, 175--182. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. S O'Neal. 2005. Accurate Atmospheric Scattering. GPU Gems 2.Google ScholarGoogle Scholar
  28. R. Perez, R. Seals, and J. Michalsky. 1993. All-weather model for sky luminance distribution-Preliminary configuration and validation. Solar Energy 50, 3 (1993), 235 -- 245. Google ScholarGoogle ScholarCross RefCross Ref
  29. Matt Pharr and Greg Humphreys. 2010. Physically Based Rendering, Second Edition: From Theory To Implementation (2nd ed.). Morgan Kaufmann Publishers Inc., San Francisco, CA, USA.Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. A. J. Preetham, Peter Shirley, and Brian Smits. 1999. A practical analytic model for daylight. In Proceedings of the 26th annual conference on Computer graphics and interactive techniques (SIGGRAPH '99). ACM Press/Addison-Wesley Publishing Co., New York, NY, USA, 91--100. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Chandrasekhar Subrahmanyan. 1960. Radiative transfer.Google ScholarGoogle Scholar
  32. HC van de Hulst. 1957. Light scattering by small particles. Dover Publications.Google ScholarGoogle Scholar
  33. Eric Veach. 1997. Robust Monte Carlo methods for light transport simulation. Ph.D. Dissertation. Stanford University, Stanford, CA, USA.Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Xin Wang, Jun Gao, Zhiguo Fan, and Nicholas W Roberts. 2016. An analytical model for the celestial distribution of polarized light, accounting for polarization singularities, wavelength and atmospheric turbidity. Journal of Optics 18, 6 (2016), 065601. http://stacks.iop.org/2040-8986/18/i=6/a=065601Google ScholarGoogle ScholarCross RefCross Ref
  35. Alexander Wilkie. 2018. The Advanced Rendering Toolkit. http://cgg.mff.cuni.cz/ART.Google ScholarGoogle Scholar
  36. Alexander Wilkie, Sehera Nawaz, Marc Droske, Andrea Weidlich, and Johannes Hanika. 2014. Hero wavelength spectral sampling. In Computer Graphics Forum, Vol. 33. Wiley Online Library, 123--131.Google ScholarGoogle Scholar
  37. Alexander Wilkie, Christiane Ulbricht, Robert F. Tobler, Georg Zotti, and Werner Purgathofer. 2004. An Analytical Model for Skylight Polarization. In Rendering Techniques, Alexander Keller and Henrik Wann Jensen (Eds.). Eurographics Association, 387--398.Google ScholarGoogle Scholar

Index Terms

  1. A fitted radiance and attenuation model for realistic atmospheres

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in

    Full Access

    • Published in

      cover image ACM Transactions on Graphics
      ACM Transactions on Graphics  Volume 40, Issue 4
      August 2021
      2170 pages
      ISSN:0730-0301
      EISSN:1557-7368
      DOI:10.1145/3450626
      Issue’s Table of Contents

      Copyright © 2021 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 19 July 2021
      Published in tog Volume 40, Issue 4

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Author Tags

      Qualifiers

      • research-article

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader