skip to main content
research-article
Open Access

Constrained willmore surfaces

Published:19 July 2021Publication History
Skip Abstract Section

Abstract

Smooth curves and surfaces can be characterized as minimizers of squared curvature bending energies subject to constraints. In the univariate case with an isometry (length) constraint this leads to classic non-linear splines. For surfaces, isometry is too rigid a constraint and instead one asks for minimizers of the Willmore (squared mean curvature) energy subject to a conformality constraint. We present an efficient algorithm for (conformally) constrained Willmore surfaces using triangle meshes of arbitrary topology with or without boundary. Our conformal class constraint is based on the discrete notion of conformal equivalence of triangle meshes. The resulting non-linear constrained optimization problem can be solved efficiently using the competitive gradient descent method together with appropriate Sobolev metrics. The surfaces can be represented either through point positions or differential coordinates. The latter enable the realization of abstract metric surfaces without an initial immersion. A versatile toolkit for extrinsic conformal geometry processing, suitable for the construction and manipulation of smooth surfaces, results through the inclusion of additional point, area, and volume constraints.

Skip Supplemental Material Section

Supplemental Material

3450626.3459759.mp4

References

  1. Christie Alappat, Achim Basermann, Alan R. Bishop, Holger Fehske, Georg Hager, Olaf Schenk, Jonas Thies, and Gerhard Wellein. 2020. A Recursive Algebraic Coloring Technique for Hardware-Efficient Symmetric Sparse Matrix-Vector Multiplication. ACM Trans. Par. Comput. 7, 3 (2020), 19:1--37.Google ScholarGoogle Scholar
  2. Mikhail V. Babich and Alexander I. Bobenko. 1993. Willmore Tori with Umbilic Lines and Minimal Surfaces in Hyperbolic Space. Duke Math. J. 72, 1 (1993), 151--185.Google ScholarGoogle ScholarCross RefCross Ref
  3. John W. Barrett, Harald Garcke, and Robert Nürnberg. 2016. Computational Parametric Willmore Flow with Spontaneous Curvature and Area Difference Elasticity Effects. SIAM J. Numer. Anal. 54, 3 (2016), 1732--1762.Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Dimitri P. Bertsekas. 1996. Constrained Optimization and Lagrange Multiplier Methods. Athena Scientific.Google ScholarGoogle Scholar
  5. Wilhelm Blaschke. 1929. Vorlesungen über Differentialgeometrie und geometrische Grundlagen von Einsteins Relativitätstheorie III. Springer.Google ScholarGoogle Scholar
  6. Alexander I. Bobenko, Ulrich Pinkall, and Boris Springborn. 2015. Discrete Conformal Maps and Ideal Hyperbolic Polyhedra. Geom. & Top. 19, 4 (2015), 2155--2215.Google ScholarGoogle ScholarCross RefCross Ref
  7. Alexander I. Bobenko and Peter Schröder. 2005. Discrete Willmore Flow. In Proc. Symp. Geom. Proc. Eurographics, 101--110.Google ScholarGoogle Scholar
  8. Alexander I. Bobenko, Stefan Sechelmann, and Boris Springborn. 2016. Discrete Conformal Maps: Boundary Value Problems, Circle Domains, Fuchsian and Schottky Uniformization. In Advances in Discrete Differential Geometry, Alexander I. Bobenko (Ed.). Springer, 1--56.Google ScholarGoogle Scholar
  9. Christoph Bohle. 2010. Constrained Willmore Tori in the 4-Sphere. J. Diff. Geom. 86, 1 (2010), 71--132.Google ScholarGoogle Scholar
  10. Christoph Bohle, G. Paul Peters, and Ulrich Pinkall. 2008. Constrained Willmore Surfaces. Calc. Var. 32 (2008), 263--277.Google ScholarGoogle ScholarCross RefCross Ref
  11. Matthias Bollhöfer, Aryan Eftekhari, Simon Scheidegger, and Olaf Schenk. 2019. Large-scale Sparse Inverse Covariance Matrix Estimation. SIAM J. Sci. Comp. 41, 1 (2019), A380--A401.Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Matthias Bollhöfer, Olaf Schenk, Radim Janalik, Steve Hamm, and Kiran Gullapalli. 2020. State-of-the-Art Sparse Direct Solvers. (2020), 3--33.Google ScholarGoogle Scholar
  13. Robert Bridson, S. Marino, and Ronald Fedkiw. 2003. Simulation of Clothing with Folds and Wrinkles. In Proc. Symp. Comp. Anim. 28--36.Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Marcel Campen, Ryan Capouellez, Hanxiao Shen, Leyi Zhu, Daniele Panozzo, and Denis Zorin. 2021. Efficient and Robust Discrete Conformal Equivalence with Boundary. (2021). arXiv:2104.04614.Google ScholarGoogle Scholar
  15. P. B. Canham. 1970. The Minimum Energy of Bending as a Possible Explanation of the Biconcave Shape of the Human Red Blood Cell. J. Theor. Biology 26, 1 (1970), 61--81.Google ScholarGoogle ScholarCross RefCross Ref
  16. Albert Chern, Felix Knöppel, Ulrich Pinkall, and Peter Schröder. 2018. Shape from Metric. ACM Trans. Graph. 37, 4 (2018), 63:1--17.Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Bennet Chow and Feng Luo. 2003. Combinatorial Ricci Flows on Surfaces. J. Diff. Geom. 63, 1 (2003), 97--129.Google ScholarGoogle ScholarCross RefCross Ref
  18. Ming Chuang, Szymon Rusinkiewicz, and Misha Kazhdan. 2016. Gradient-Domain Processing of Meshes. J. Comp. Graph. Tech. 5, 4 (2016), 44--55.Google ScholarGoogle Scholar
  19. Keenan Crane, Ulrich Pinkall, and Peter Schröder. 2011. Spin Transformations of Discrete Surfaces. ACM Trans. Graph. 30, 4 (2011), 104:1--10.Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Keenan Crane, Ulrich Pinkall, and Peter Schröder. 2013. Robust Fairing via Conformal Curvature Flow. ACM Trans. Graph. 32, 4 (2013), 61:1--10.Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Bram Custers and Amir Vaxman. 2020. Subdivision Directional Fields. ACM Trans. Graph. 39, 2 (2020), 11:1--23.Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Mathieu Desbrun, Eva Kanso, and Yiying Tong. 2008. Discrete Differential Forms for Computational Modeling. In Discrete Differential Geometry, Alexander I. Bobenko, Peter Schröder, John M. Sullivan, and Günther M. Ziegler (Eds.). Oberwolfach Seminars, Vol. 38. Birkhäuser Verlag.Google ScholarGoogle Scholar
  23. Ilja Eckstein, Jean-Philippe Pons, Yiying Tong, C.-C. Jay Kuo, and Mathieu Desbrun. 2007. Generalized Surface Flows for Mesh Processing. In Proc. Symp. Geom. Proc. Eurographics, 183--192.Google ScholarGoogle Scholar
  24. George K. Francis. 1987. A Topological Picturebook. Springer.Google ScholarGoogle Scholar
  25. Adriano M. Garsia. 1961. An Imbedding of Closed Riemann Surfaces in Euclidean Space. Comm. Math. Helv. 35 (1961), 93--110.Google ScholarGoogle ScholarCross RefCross Ref
  26. Huabin Ge. 2018. Combinatorial Calabi Flows on Surfaces. Trans. Amer. Math. Soc. 370, 2 (2018), 1377--1391.Google ScholarGoogle ScholarCross RefCross Ref
  27. Mark Gillespie, Boris Springborn, and Keenan Crane. 2021. Discrete Conformal Equivalence of Triangle Meshes. ACM Trans. Graph. 40, 2 (2021).Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. David Glickenstein. 2011. Discrete Conformal Variations and Scalar Curvature on Piecewise Flat Two-and Three-Dimensional Manifolds. J. Diff. Geom. 87, 2 (2011), 201--238.Google ScholarGoogle ScholarCross RefCross Ref
  29. Eitan Grinspun, Anil Hirani, Mathieu Desbrun, and Peter Schröder. 2003. Discrete Shells. In Proc. Symp. Comp. Anim. 62--67.Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Anthony Gruber and Eugenio Aulisa. 2020. Computational P-Willmore Flow with Conformal Penalty. ACM Trans. Graph. 39, 5 (2020), 161:1--16.Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. W. Helfrich. 1973. Elastic Properties of Lipid Bilayers: Theory and Possible Experiments. Z. Naturforsch. C 28, 11--12 (1973), 693--703.Google ScholarGoogle ScholarCross RefCross Ref
  32. Lynn Heller. 2013. Constrained Willmore tori and elastic curves in 2-dimensional space forms. (2013). arXiv:1303.1445.Google ScholarGoogle Scholar
  33. Lynn Heller. 2015. Constrained Willmore and CMC Tori in the 3-Sphere. Diff. Geom. Appl. 40 (2015), 232--242.Google ScholarGoogle ScholarCross RefCross Ref
  34. Lynn Heller and Cheikh Birahim Ndiaye. 2019. First Explicit Constrained Willmore Minimizers of Non-Rectangular Conformal Class. (2019). arXiv:1710.00533.Google ScholarGoogle Scholar
  35. Miao Jin, Junho Kim, and Xianfeng David Gu. 2007. Discrete Surface Ricci Flow: Theory and Applications. In IMA International Conference on Mathematics of Surfaces. Springer, 209--232.Google ScholarGoogle Scholar
  36. Pushkar Joshi and Carlo Séquin. 2007. Energy Minimizers for Curvature-Based Surface Functionals. Comp. Aid. Des. Appl. 4, 5 (2007), 607--617.Google ScholarGoogle ScholarCross RefCross Ref
  37. Mina Konaković, Keenan Crane, Bailin Deng, Sofien Bouaziz, Daniel Piker, and Mark Pauly. 2016. Beyond Developable: Computational Design and Fabrication with Auxetic Materials. ACM Trans. Graph. 35, 4 (2016), 89:1--11.Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Ernst Kuwert and Reiner Schätzle. 2013. Minimizers of the Willmore Functional under Fixed Conformal Class. J. Diff. Geom. 93, 3 (2013), 471--530.Google ScholarGoogle Scholar
  39. Wai Yeung Lam and Ulrich Pinkall. 2016. Holomorphic Vector Fields and Quadatic Differentials on Planar Triangular Meshes. In Advances in Discrete Differential Geometry, Alexander I. Bobenko (Ed.). Springer, 241--265.Google ScholarGoogle Scholar
  40. Wai Yeung Lam and Ulrich Pinkall. 2017. Isothermic Triangulated Surfaces. Math. Ann. 368, 1--2 (2017), 165--195.Google ScholarGoogle ScholarCross RefCross Ref
  41. Na Lei, Xiaopeng Zheng, Jian Jiang, Yu-Yao Lin, and David Xianfeng Gu. 2017. Quadrilateral and Hexahedral Mesh Generation Based on Surface Foliation Theory. Comp. Meth. Appl. Mech. & Eng. 316 (2017), 758--781.Google ScholarGoogle ScholarCross RefCross Ref
  42. Lok Ming Lui, Ka Chun Lam, Shing-Tung Yau, and Xianfeng Gu. 2014. Teichmuller Mapping (T-Map) and its Applications in Landmark Matching Registration. SIAM J. Img. Sci. 7, 1 (2014), 391--426.Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. Feng Luo. 2004. Combinatorial Yamabe Flow on Surfaces. Comm. Contemp. Math. 6, 5 (2004), 765--780.Google ScholarGoogle ScholarCross RefCross Ref
  44. Feng Luo, Jian Sun, and Tianqi Wu. 2020. Discrete Conformal Geometry of Polyhedral Surfaces and its Convergence. (2020). arXiv:2009.12706.Google ScholarGoogle Scholar
  45. Fernando C. Marques and Andreé Neves. 2014. Min-Max Theory and the Willmore Conjecture. Ann. Math. 179, 2 (2014), 683--782.Google ScholarGoogle ScholarCross RefCross Ref
  46. David Mumford and Jayant Shah. 1989. Optimal Approximations by Piecewise Smooth Functions and assocaited Variational Problems. Comm. Pure Appl. Math. 42, 5 (1989), 577--685.Google ScholarGoogle ScholarCross RefCross Ref
  47. Jorge Nocedal and Stephen J. Wright. 2006. Numerical Optimization (2 ed.). Springer.Google ScholarGoogle Scholar
  48. Ulrich Pinkall. 1985. Hopf Tori in S3. Invent. Math. 81, 2 (1985), 379--386.Google ScholarGoogle ScholarCross RefCross Ref
  49. Ulrich Pinkall and Boris Springborn. 2021. A Discrete Version of Liouville's Theorem on Conformal Maps. Geom. Dedicata (2021).Google ScholarGoogle Scholar
  50. R. J. Renka and J. W. Neuberger. 1995. Minimal Surfaces and Sobolev Gradients. SIAM J. Sci. Comp. 16, 6 (1995), 1412--1427.Google ScholarGoogle ScholarDigital LibraryDigital Library
  51. Tristan Rivière. 2008. Analysis Aspects of Willmore Surfaces. Invent. Math. 174, 1 (2008), 1--45.Google ScholarGoogle ScholarCross RefCross Ref
  52. Reto A. Rüedy. 1971. Embeddings of Open Riemann Surfaces. Comm. Math. Helv. 46 (1971), 214--225.Google ScholarGoogle ScholarCross RefCross Ref
  53. Florian Schäfer and Anima Anandkumar. 2019. Competitive Gradient Descent. (2019). arXiv:1905.12103v2.Google ScholarGoogle Scholar
  54. Reiner Michael Schätzle. 2013. Conformally Constrained Willmore Immersions. Adv. Calc. Var. 6, 4 (2013), 375--390.Google ScholarGoogle Scholar
  55. Henrik Schumacher. 2017. On H2-Gradient Flow for the Willmore Energy. (2017). arXiv:1703.06469v1.Google ScholarGoogle Scholar
  56. Olga Sorkine. 2006. Differential Representations for Mesh Processing. Comp. Graph. Forum 25, 4 (2006), 789--807.Google ScholarGoogle ScholarCross RefCross Ref
  57. Boris Springborn. 2017. Hyperbolic Polyhedra and Discrete Uniformization. (2017). arXiv:1707.06848.Google ScholarGoogle Scholar
  58. Boris Springborn, Peter Schröder, and Ulrich Pinkall. 2008. Conformal Equivalence of Triangle Meshes. ACM Trans. Graph. 27, 3 (2008), 77:1--11.Google ScholarGoogle ScholarDigital LibraryDigital Library
  59. Amir Vaxman, Christian Müller, and Ofir Weber. 2015. Conformal Mesh Deformations with Möbius Transformations. ACM Trans. Graph. 34, 4 (2015), 55:1--11.Google ScholarGoogle ScholarDigital LibraryDigital Library
  60. Amir Vaxman, Christian Müller, and Ofir Weber. 2018. Canonical Möbius Subdivision. ACM Trans. Graph. 37, 6 (2018), 227:1--15.Google ScholarGoogle ScholarDigital LibraryDigital Library
  61. Ofir Weber, Ashish Myles, and Denis Zorin. 2012. Computing Extremal Quasiconformal Maps. Comp. Graph. Forum 31, 5 (2012), 1679--1689.Google ScholarGoogle ScholarDigital LibraryDigital Library
  62. Wei-Wei Xu and Kun Zhou. 2009. Gradient Domain Mesh Deformation-A Survey. J. Comp. Sci. Tech. 24, 1 (2009), 6--18.Google ScholarGoogle ScholarDigital LibraryDigital Library
  63. Christopher Yu, Henrik Schumacher, and Keenan Crane. 2020. Repulsive Curves. (2020). arXiv:2006.07859.Google ScholarGoogle Scholar

Index Terms

  1. Constrained willmore surfaces

          Recommendations

          Comments

          Login options

          Check if you have access through your login credentials or your institution to get full access on this article.

          Sign in

          Full Access

          PDF Format

          View or Download as a PDF file.

          PDF

          eReader

          View online with eReader.

          eReader