skip to main content
research-article

The shape matching element method: direct animation of curved surface models

Published:19 July 2021Publication History
Skip Abstract Section

Abstract

We introduce a new method for direct physics-based animation of volumetric curved models, represented using NURBS surfaces. Our technical contribution is the Shape Matching Element Method (SEM). SEM is a completely meshless algorithm, the first to simultaneously be robust to gaps and overlaps in geometry, be compatible with standard constitutive models and time integration schemes, support contact and frictional interactions and to preserve feature correspondence during simulation which enables editable simulated output. We demonstrate the efficacy of our algorithm by producing compelling physics-based animations from a variety of curved input models.

Skip Supplemental Material Section

Supplemental Material

3450626.3459772.mp4
a69-trusty.mp4

References

  1. Martin Aigner, Christoph Heinrich, Bert Jüttler, Elisabeth Pilgerstorfer, Bernd Simeon, and Anh-Vu Vuong. 2009. Swept Volume Parameterization for Isogeometric Analysis. 19--44.Google ScholarGoogle Scholar
  2. Sheldon Andrews, Marek Teichmann, and Paul G. Kry. 2016. Blended Linear Models for Reduced Compliant Mechanical Systems. IEEE Tran. on Visualization and Computer Graphics (TVCG) 22, 3 (2016), 1209--1222.Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Autodesk. 2021. Autodesk Fusion 360. https://www.autodesk.ca/en/products/fusion-360/Google ScholarGoogle Scholar
  4. L. Beirão da Veiga, F. Brezzi, L. D. Marini, and A. Russo. 2014. The Hitchhiker's Guide to the Virtual Element Method. Mathematical Models and Methods in Applied Sciences 24, 08 (2014), 1541--1573.Google ScholarGoogle ScholarCross RefCross Ref
  5. Online Blender. 2020. Blender - a 3D modelling and rendering package. http://www.blender.orgGoogle ScholarGoogle Scholar
  6. Sofien Bouaziz, Mario Deuss, Yuliy Schwartzburg, Thibaut Weise, and Mark Pauly. 2012. Shape-Up: Shaping Discrete Geometry with Projections. Comput. Graph. Forum 31, 5 (Aug. 2012), 1657--1667.Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Sofien Bouaziz, Sebastian Martin, Tiantian Liu, Ladislav Kavan, and Mark Pauly. 2014. Projective Dynamics: Fusing Constraint Projections for Fast Simulation. ACM Trans. Graph. 33, 4, Article 154 (July 2014), 11 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Franco Brezzi, Konstantin Lipnikov, and Valeria Simoncini. 2005. A family of mimetic finite difference methods on polygonal and polyhedral meshes. Mathematical Models and Methods in Applied Sciences 15 (04 2005).Google ScholarGoogle Scholar
  9. Robert Bridson, Ronald Fedkiw, and John Anderson. 2002. Robust Treatment of Collisions, Contact and Friction for Cloth Animation. ACM Trans. Graph. 21, 3 (July 2002), 594--603.Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Thomas Buffet, Damien Rohmer, Loïc Barthe, Laurence Boissieux, and Marie-Paule Cani. 2019. Implicit Untangling: A Robust Solution for Modeling Layered Clothing. ACM Trans. Graph. 38, 4, Article 120 (July 2019), 12 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. J. Cottrell, Thomas Hughes, and Yuri Bazilevs. 2009. Isogeometric Analysis: Toward integration of CAD and FEA.Google ScholarGoogle ScholarCross RefCross Ref
  12. Fernando De Goes, Andrew Butts, and Mathieu Desbrun. 2020. Discrete Differential Operators on Polygonal Meshes. ACM Trans. Graph. 39, 4, Article 110 (July 2020), 14 pages.Google ScholarGoogle Scholar
  13. R. Diziol, J. Bender, and D. Bayer. 2011. Robust Real-Time Deformation of Incompressible Surface Meshes. In Proceedings of the 2011 ACM SIGGRAPH/Eurographics Symposium on Computer Animation (SCA '11). ACM, New York, NY, USA, 237--246.Google ScholarGoogle Scholar
  14. François Faure, Benjamin Gilles, Guillaume Bousquet, and Dinesh K. Pai. 2011. Sparse Meshless Models of Complex Deformable Solids. ACM Trans. Graph. 30, 4, Article 73 (July 2011), 10 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Jun Gao, Wenzheng Chen, Tommy Xiang, Clement Fuji Tsang, Alec Jacobson, Morgan McGuire, and Sanja Fidler. 2020. Learning Deformable Tetrahedral Meshes for 3D Reconstruction. In Advances In Neural Information Processing Systems.Google ScholarGoogle Scholar
  16. Benjamin Gilles, Guillaume Bousquet, Francois Faure, and Dinesh K. Pai. 2011. Frame-Based Elastic Models. ACM Trans. Graph. 30, 2, Article 15 (April 2011), 12 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. G. Haasemann, M. Kästner, S. Prüger, and V. Ulbricht. 2011. Development of a quadratic finite element formulation based on the XFEM and NURBS. Internat. J. Numer. Methods Engrg. 86, 4--5 (2011), 598--617.Google ScholarGoogle ScholarCross RefCross Ref
  18. Christian Hafner, Christian Schumacher, Espen Knoop, Thomas Auzinger, Bernd Bickel, and Moritz Bächer. 2019. X-CAD: Optimizing CAD Models with Extended Finite Elements. ACM Trans. Graph. 38, 6, Article 157 (Nov. 2019), 15 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Ch. Heinrich, B. Simeon, and St. Boschert. 2012. A finite volume method on NURBS geometries and its application in isogeometric fluid-structure interaction. Mathematics and Computers in Simulation 82, 9 (2012), 1645 -- 1666.Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Yixin Hu, Qingnan Zhou, Xifeng Gao, Alec Jacobson, Denis Zorin, and Daniele Panozzo. 2018. Tetrahedral Meshing in the Wild. ACM Trans. Graph. 37, 4, Article 60 (July 2018), 14 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Alec Jacobson et al. 2018. gptoolbox: Geometry Processing Toolbox. http://github.com/alecjacobson/gptoolbox.Google ScholarGoogle Scholar
  22. Alec Jacobson, Ilya Baran, Jovan Popović, and Olga Sorkine. 2011. Bounded Biharmonic Weights for Real-Time Deformation. ACM Trans. Graph. (proceedings of ACM SIGGRAPH) 30, 4 (2011), 78:1--78:8.Google ScholarGoogle Scholar
  23. Alec Jacobson, Zhigang Deng, Ladislav Kavan, and JP Lewis. 2014a. Skinning: Real-time Shape Deformation. In ACM SIGGRAPH 2014 Courses.Google ScholarGoogle Scholar
  24. Alec Jacobson, Zhigang Deng, Ladislav Kavan, and J. P. Lewis. 2014b. Skinning: Real-Time Shape Deformation (Full Text Not Available) (SIGGRAPH '14). ACM, 1 pages.Google ScholarGoogle Scholar
  25. Alec Jacobson and Olga Sorkine. 2011. Stretchable and Twistable Bones for Skeletal Shape Deformation. ACM Trans. Graph. (proceedings of ACM SIGGRAPH ASIA) 30, 6 (2011), 165:1--165:8.Google ScholarGoogle Scholar
  26. Doug L. James and Dinesh K. Pai. 1999. ArtDefo: Accurate Real Time Deformable Objects. In Proceedings of the 26th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH '99). 65--72.Google ScholarGoogle Scholar
  27. Peter Kaufmann, Sebastian Martin, Mario Botsch, and Markus Gross. 2009. Flexible simulation of deformable models using discontinuous galerkin fem. Graphical Models 71, 4 (2009), 153--167.Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Amir Khosravifard and Mohammad Rahim Hematiyan. 2010. A new method for meshless integration in 2D and 3D Galerkin meshfree methods. Engineering Analysis with Boundary Elements 34, 1 (2010), 30 -- 40.Google ScholarGoogle ScholarCross RefCross Ref
  29. Cornelius Lanczos. 2012. The variational principles of mechanics. Courier Corporation.Google ScholarGoogle Scholar
  30. Grégory Legrain. 2013. A NURBS enhanced extended finite element approach for unfitted CAD analysis. Computational Mechanics 52 (04 2013).Google ScholarGoogle Scholar
  31. David I.W. Levin. 2020. Bartels: A lightweight collection of routines for physics simulation. https://github.com/dilevin/Bartels.Google ScholarGoogle Scholar
  32. Xiang Li, Nandan Sudarsanam, and Daniel D Frey. 2006. Regularities in data from factorial experiments. Complexity 11, 5 (2006), 32--45.Google ScholarGoogle ScholarCross RefCross Ref
  33. Konstantin Lipnikov, Gianmarco Manzini, and Mikhail Shashkov. 2014. Mimetic Finite Difference Method. J. Comput. Phys. 257 (Jan. 2014), 1163--1227.Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Wing Kam Liu, Sukky Jun, and Yi Fei Zhang. 1995. Reproducing kernel particle methods. International Journal for Numerical Methods in Fluids 20, 8--9 (1995), 1081--1106.Google ScholarGoogle Scholar
  35. Sebastian Martin, Peter Kaufmann, Mario Botsch, Eitan Grinspun, and Markus Gross. 2010. Unified Simulation of Elastic Rods, Shells, and Solids. ACM Trans. Graph. 29, 4, Article 39 (July 2010), 10 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Aleka McAdams, Yongning Zhu, Andrew Selle, Mark Empey, Rasmus Tamstorf, Joseph Teran, and Eftychios Sifakis. 2011a. Efficient Elasticity for Character Skinning with Contact and Collisions. ACM, New York, NY, USA.Google ScholarGoogle Scholar
  37. Aleka McAdams, Yongning Zhu, Andrew Selle, Mark Empey, Rasmus Tamstorf, Joseph Teran, and Eftychios Sifakis. 2011b. Efficient Elasticity for Character Skinning with Contact and Collisions. ACM Trans. Graph. 30, 4, Article 37 (2011), 12 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Robert McNeel and Associates. 2021. Rhinoceros 3D. https://www.rhino3d.com/Google ScholarGoogle Scholar
  39. Matthias Müller and Nuttapong Chentanez. 2011. Solid Simulation with Oriented Particles. In ACM SIGGRAPH 2011 Papers (SIGGRAPH '11). ACM, New York, NY, USA, Article 92, 10 pages.Google ScholarGoogle Scholar
  40. Matthias Müller, Nuttapong Chentanez, and Miles Macklin. 2016. Simulating Visual Geometry. In MIG. ACM, 31--38.Google ScholarGoogle Scholar
  41. Matthias Müller, Bruno Heidelberger, Marcus Hennix, and John Ratcliff. 2007. Position based dynamics. J Vis Commun Image R 18, 2 (2007), 109--118.Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. Matthias Müller, Bruno Heidelberger, Matthias Teschner, and Markus Gross. 2005. Meshless Deformations Based on Shape Matching. ACM Trans. Graph. 24, 3 (July 2005), 471--478.Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. M. Müller, R. Keiser, A. Nealen, M. Pauly, M. Gross, and M. Alexa. 2004. Point Based Animation of Elastic, Plastic and Melting Objects. In Proceedings of the 2004 ACM SIGGRAPH/Eurographics Symposium on Computer Animation. Eurographics Association, 141--151.Google ScholarGoogle Scholar
  44. Matthias Müller, Matthias Teschner, and Markus Gross. 2004. Physically-Based Simulation of Objects Represented by Surface Meshes. In Proceedings of the Computer Graphics International (CGI '04). IEEE Computer Society, USA, 26--33.Google ScholarGoogle ScholarCross RefCross Ref
  45. Matthieu Nesme, Paul G. Kry, Lenka Jeřábková, and François Faure. 2009. Preserving Topology and Elasticity for Embedded Deformable Models. ACM Trans. Graph. 28, 3, Article 52 (2009), 9 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. Joachim Nitsche. 1971. Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg 36 (1971), 9--15.Google ScholarGoogle Scholar
  47. Alec R. Rivers and Doug L. James. 2007. FastLSM: Fast Lattice Shape Matching for Robust Real-Time Deformation. In ACM SIGGRAPH 2007 Papers (SIGGRAPH '07). ACM, New York, NY, USA, 82--es.Google ScholarGoogle Scholar
  48. Scott D Roth. 1982. Ray casting for modeling solids. Computer Graphics and Image Processing 18, 2 (1982), 109 -- 144.Google ScholarGoogle ScholarCross RefCross Ref
  49. Masoud Safdari, Ahmad R. Najafi, Nancy R. Sottos, and Philippe H. Geubelle. 2015. A NURBS-based interface-enriched generalized finite element method for problems with complex discontinuous gradient fields. Internat. J. Numer. Methods Engrg. 101, 12 (2015), 950--964.Google ScholarGoogle ScholarCross RefCross Ref
  50. Masoud Safdari, Ahmad R. Najafi, Nancy R. Sottos, and Philippe H. Geubelle. 2016. A NURBS-based generalized finite element scheme for 3D simulation of heterogeneous materials. J. Comput. Phys. 318 (2016), 373 -- 390.Google ScholarGoogle ScholarDigital LibraryDigital Library
  51. Rohan Sawhney and Keenan Crane. 2020. Monte Carlo Geometry Processing: A Grid-Free Approach to PDE-Based Methods on Volumetric Domains. ACM Trans. Graph. 39, 4 (2020).Google ScholarGoogle ScholarDigital LibraryDigital Library
  52. Ruben Sevilla, Sonia Mendez, and Antonio Huerta. 2008. Nurbs-enhanced finite element method (NEFEM). Internat. J. Numer. Methods Engrg. 76 (10 2008), 56--83.Google ScholarGoogle Scholar
  53. Jonathan Richard Shewchuk. 1996. Triangle: Engineering a 2D Quality Mesh Generator and Delaunay Triangulator. In Applied Computational Geometry: Towards Geometric Engineering, Ming C. Lin and Dinesh Manocha (Eds.). Lecture Notes in Computer Science, Vol. 1148. Springer-Verlag, 203--222. From the First ACM Workshop on Applied Computational Geometry.Google ScholarGoogle ScholarDigital LibraryDigital Library
  54. Jonathan Richard Shewchuk. 2002. Delaunay refinement algorithms for triangular mesh generation. Computational Geometry 22, 1 (2002), 21 -- 74. 16th ACM Symposium on Computational Geometry.Google ScholarGoogle ScholarDigital LibraryDigital Library
  55. Eftychios Sifakis and Jernej Barbic. 2012. FEM Simulation of 3D Deformable Solids: A Practitioner's Guide to Theory, Discretization and Model Reduction. In ACM SIGGRAPH 2012 Courses. ACM, Article 20, 50 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  56. Denis Steinemann, Miguel A. Otaduy, and Markus Gross. 2008. Fast Adaptive Shape Matching Deformations. In ACM/Eurographics Symposium on Computer Animation. Eurographics Association, 87--94.Google ScholarGoogle Scholar
  57. Thomas Stumpp, Jonas Spillmann, Markus Becker, and Matthias Teschner. 2008. A Geometric Deformation Model for Stable Cloth Simulation. VRIPHYS 2008, 39--46.Google ScholarGoogle Scholar
  58. Michael Tao, Christopher Batty, Eugene Fiume, and David Levin. 2019. Mandoline: Robust Cut-Cell Generation for Arbitrary Triangle Meshes. ACM Trans. Graph. (2019).Google ScholarGoogle ScholarDigital LibraryDigital Library
  59. Demetri Terzopoulos, John Platt, Alan Barr, and Kurt Fleischer. 1987. Elastically Deformable Models. 21, 4 (1987), 205--214.Google ScholarGoogle Scholar
  60. Demetri Terzopoulos and Hong Qin. 1994. Dynamic NURBS with Geometric Constraints for Interactive Sculpting. ACM Trans. Graph. 13, 2 (April 1994), 103--136.Google ScholarGoogle ScholarDigital LibraryDigital Library
  61. L. Veiga, Franco Brezzi, Andrea Cangiani, G. Manzini, L. Marini, and Alessandro Russo. 2012. Basic principles of Virtual Element Methods. Mathematical Models and Methods in Applied Sciences 23 (11 2012).Google ScholarGoogle Scholar
  62. Ingo Wald, Sven Woop, Carsten Benthin, Gregory S. Johnson, and Manfred Ernst. 2014. Embree: A Kernel Framework for Efficient CPU Ray Tracing. ACM Trans. Graph. 33, 4, Article 143 (July 2014), 8 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  63. Bin Wang, François Faure, and Dinesh K. Pai. 2012. Adaptive image-based intersection volume. ACM Trans. Graph. 31, 4 (2012), 97:1--97:9.Google ScholarGoogle ScholarDigital LibraryDigital Library
  64. Yu Wang, Alec Jacobson, Jernej Barbič, and Ladislav Kavan. 2015. Linear Subspace Design for Real-Time Shape Deformation. ACM Trans. Graph. 34, 4, Article 57 (July 2015), 11 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  65. Andrew J. Weber and Galen Gornowicz. 2009. Collision-Free Construction of Animated Feathers Using Implicit Constraint Surfaces. ACM Trans. Graph. 28, 2, Article 12 (2009), 8 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  66. Zangyueyang Xian, Xin Tong, and Tiantian Liu. 2019. A Scalable Galerkin Multigrid Method for Real-Time Simulation of Deformable Objects. ACM Trans. Graph. 38, 6, Article 162 (2019), 13 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  67. Jiayi Eris Zhang, Seungbae Bang, David I.W. Levin, and Alec Jacobson. 2020. Complementary Dynamics. ACM Trans. Graph. (2020).Google ScholarGoogle Scholar

Index Terms

  1. The shape matching element method: direct animation of curved surface models

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in

    Full Access

    • Published in

      cover image ACM Transactions on Graphics
      ACM Transactions on Graphics  Volume 40, Issue 4
      August 2021
      2170 pages
      ISSN:0730-0301
      EISSN:1557-7368
      DOI:10.1145/3450626
      Issue’s Table of Contents

      Copyright © 2021 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 19 July 2021
      Published in tog Volume 40, Issue 4

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader