skip to main content
research-article
Open Access

Systematically differentiating parametric discontinuities

Published:19 July 2021Publication History
Skip Abstract Section

Abstract

Emerging research in computer graphics, inverse problems, and machine learning requires us to differentiate and optimize parametric discontinuities. These discontinuities appear in object boundaries, occlusion, contact, and sudden change over time. In many domains, such as rendering and physics simulation, we differentiate the parameters of models that are expressed as integrals over discontinuous functions. Ignoring the discontinuities during differentiation often has a significant impact on the optimization process. Previous approaches either apply specialized hand-derived solutions, smooth out the discontinuities, or rely on incorrect automatic differentiation.

We propose a systematic approach to differentiating integrals with discontinuous integrands, by developing a new differentiable programming language. We introduce integration as a language primitive and account for the Dirac delta contribution from differentiating parametric discontinuities in the integrand. We formally define the language semantics and prove the correctness and closure under the differentiation, allowing the generation of gradients and higher-order derivatives. We also build a system, Teg, implementing these semantics. Our approach is widely applicable to a variety of tasks, including image stylization, fitting shader parameters, trajectory optimization, and optimizing physical designs.

Skip Supplemental Material Section

Supplemental Material

3450626.3459775.mp4

References

  1. Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg, Dan Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah, Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals, Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. 2015. TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems.Google ScholarGoogle Scholar
  2. Luke Anderson, Tzu-Mao Li, Jaakko Lehtinen, and Frédo Durand. 2017. Aether: An embedded domain specific sampling language for Monte Carlo rendering. ACM Trans. Graph. (Proc. SIGGRAPH) 36, 4 (2017), 1--16.Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. James Arvo. 1994. The Irradiance Jacobian for Partially Occluded Polyhedral Sources. In SIGGRAPH. 343--350.Google ScholarGoogle Scholar
  4. Sai Praveen Bangaru, Tzu-Mao Li, and Frédo Durand. 2020. Unbiased warped-area sampling for differentiable rendering. ACM Trans. Graph. (Proc. SIGGRAPH Asia) 39, 6 (2020), 1--18.Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Alan H Barr, Bena Currin, Steven Gabriel, and John F Hughes. 1992. Smooth interpolation of orientations with angular velocity constraints using quaternions. Comput. Graph. (Proc. SIGGRAPH) 26, 2 (1992), 313--320.Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Harry Bateman. 1931. On dissipative systems and related variational principles. Physical Review 38, 4 (1931), 815.Google ScholarGoogle ScholarCross RefCross Ref
  7. John T Betts. 1998. Survey of numerical methods for trajectory optimization. Journal of guidance, control, and dynamics 21, 2 (1998), 193--207.Google ScholarGoogle ScholarCross RefCross Ref
  8. John T. Betts. 2009. Practical Methods for Optimal Control and Estimation Using Nonlinear Programming (2nd ed.). Cambridge University Press, USA.Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Eli Bingham, Jonathan P. Chen, Martin Jankowiak, Fritz Obermeyer, Neeraj Pradhan, Theofanis Karaletsos, Rohit Singh, Paul Szerlip, Paul Horsfall, and Noah D. Goodman. 2019. Pyro: Deep Universal Probabilistic Programming. J. Mach. Learn. Res. 20, 1 (2019), 973--978.Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal Maclaurin, and Skye Wanderman-Milne. 2018. JAX: composable transformations of Python+NumPy programs. http://github.com/google/jaxGoogle ScholarGoogle Scholar
  11. Ricky T. Q. Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. 2018. Neural Ordinary Differential Equations. In Advances in Neural Information Processing Systems, Vol. 31. 6571--6583.Google ScholarGoogle Scholar
  12. Michael F Cohen. 1992. Interactive spacetime control for animation. Comput. Graph. (Proc. SIGGRAPH) (1992), 293--302.Google ScholarGoogle Scholar
  13. J.F. Colombeau. 1984. New Generalized Functions and Multiplication of Distributions. North-Holland.Google ScholarGoogle Scholar
  14. Filipe de Avila Belbute-Peres, Kevin Smith, Kelsey Allen, Josh Tenenbaum, and J. Zico Kolter. 2018. End-to-End Differentiable Physics for Learning and Control. In Advances in Neural Information Processing Systems, Vol. 31. 7178--7189.Google ScholarGoogle Scholar
  15. Martin de La Gorce, David J Fleet, and Nikos Paragios. 2011. Model-based 3D hand pose estimation from monocular video. IEEE Trans. Pattern Anal. Mach. Intell. 33, 9 (2011), 1793--1805.Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Zachary Devito, Michael Mara, Michael Zollhöfer, Gilbert Bernstein, Jonathan Ragan-Kelley, Christian Theobalt, Pat Hanrahan, Matthew Fisher, and Matthias Niessner. 2017. Opt: A Domain Specific Language for Non-Linear Least Squares Optimization in Graphics and Imaging. ACM Trans. Graph. 36, 5 (2017), 171:1--171:27.Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. P.A.M. Dirac. 1981. The Principles of Quantum Mechanics. Clarendon Press.Google ScholarGoogle Scholar
  18. Peter Dyer and SR McReynolds. 1968. On optimal control problems with discontinuities. J. Math. Anal. Appl. 23, 3 (1968), 585--603.Google ScholarGoogle ScholarCross RefCross Ref
  19. Conal Elliott. 2018. The Simple Essence of Automatic Differentiation. International Conference on Functional Programming (2018).Google ScholarGoogle Scholar
  20. Timon Gehr, Samuel Steffen, and Martin Vechev. 2020. λPSI: exact inference for higherorder probabilistic programs. In Programming Language Design and Implementation. 883--897.Google ScholarGoogle Scholar
  21. Moritz Geilinger, David Hahn, Jonas Zehnder, Moritz Bächer, Bernhard Thomaszewski, and Stelian Coros. 2020. ADD: Analytically Differentiable Dynamics for Multi-Body Systems with Frictional Contact. ACM Trans. Graph. (Proc. SIGGRAPH Asia) 39, 6 (2020).Google ScholarGoogle Scholar
  22. Ioannis Gkioulekas, Shuang Zhao, Kavita Bala, Todd Zickler, and Anat Levin. 2013. Inverse Volume Rendering with Material Dictionaries. ACM Trans. Graph. (Proc. SIGGRAPH Asia) 32, 6 (2013), 162:1--162:13.Google ScholarGoogle Scholar
  23. Andreas Griewank and Andrea Walther. 2008. Evaluating Derivatives. Society for Industrial and Applied Mathematics.Google ScholarGoogle Scholar
  24. Yu Guo, Miloš Hašan, Lingqi Yan, and Shuang Zhao. 2020. A Bayesian Inference Framework for Procedural Material Parameter Estimation. Comput. Graph. Forum (Proc. Pacific Graphics) 39, 7 (2020), 255--266.Google ScholarGoogle ScholarCross RefCross Ref
  25. Christian Hafner, Christian Schumacher, Espen Knoop, Thomas Auzinger, Bernd Bickel, and Moritz Bächer. 2019. X-CAD: Optimizing CAD Models with Extended Finite Elements. ACM Trans. Graph. (Proc. SIGGRAPH Asia) 38, 6 (2019).Google ScholarGoogle Scholar
  26. William Rowan Hamilton. 1834. XV. On a general method in dynamics; by which the study of the motions of all free systems of attracting or repelling points is reduced to the search and differentiation of one central relation, or characteristic function. Philosophical transactions of the Royal Society of London 124 (1834), 247--308.Google ScholarGoogle Scholar
  27. Charles R Hargraves and Stephen W Paris. 1987. Direct trajectory optimization using nonlinear programming and collocation. Journal of guidance, control, and dynamics 10, 4 (1987), 338--342.Google ScholarGoogle ScholarCross RefCross Ref
  28. R.C. Hibbeler. 2000. Mechanics of Materials. Prentice Hall.Google ScholarGoogle Scholar
  29. Philipp Holl, Nils Thuerey, and Vladlen Koltun. 2020. Learning to Control PDEs with Differentiable Physics. In International Conference on Learning Representations.Google ScholarGoogle Scholar
  30. Yuanming Hu, Luke Anderson, Tzu-Mao Li, Qi Sun, Nathan Carr, Jonathan Ragan-Kelley, and Frédo Durand. 2020. DiffTaichi: Differentiable Programming for Physical Simulation. International Conference on Learning Representations (2020).Google ScholarGoogle Scholar
  31. K. H. Hunt and F. R. E. Crossley. 1975. Coefficient of Restitution Interpreted as Damping in Vibroimpact. Journal of Applied Mechanics 42, 2 (1975), 440--445.Google ScholarGoogle ScholarCross RefCross Ref
  32. Jeevana Priya Inala, Sicun Gao, Soonho Kong, and Armando Solar-Lezama. 2018. REAS: combining numerical optimization with SAT solving. arXiv (2018).Google ScholarGoogle Scholar
  33. Kenneth E. Iverson. 1962. A Programming Language. John Wiley & Sons, Inc.Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Wenzel Jakob. 2019. Enoki: structured vectorization and differentiation on modern processor architectures. https://github.com/mitsuba-renderer/enoki.Google ScholarGoogle Scholar
  35. James T. Kajiya. 1986. The Rendering Equation. Comput. Graph. (Proc. SIGGRAPH) 20, 4 (1986), 143--150.Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Michael Kass. 1992. CONDOR: Constraint-Based Dataflow. Comput. Graph. (Proc. SIGGRAPH) 26, 2 (1992), 321--330.Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Michael Kass, Andrew Witkin, and Demetri Terzopoulos. 1988. Snakes: Active contour models. Int. J. Comput. Vision 1, 4 (1988), 321--331.Google ScholarGoogle ScholarCross RefCross Ref
  38. Hiroharu Kato, Yoshitaka Ushiku, and Tatsuya Harada. 2018. Neural 3D Mesh Renderer. In Computer Vision and Pattern Recognition. IEEE, 3907--3916.Google ScholarGoogle Scholar
  39. Diederick P Kingma and Jimmy Ba. 2015. Adam: A method for stochastic optimization. In International Conference on Learning Representations.Google ScholarGoogle Scholar
  40. Donald E Knuth. 1992. Two notes on notation. The American Mathematical Monthly 99, 5 (1992), 403--422.Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. Alp Kucukelbir, Rajesh Ranganath, Andrew Gelman, and David M. Blei. 2015. Automatic Variational Inference in Stan. In Advances in Neural Information Processing Systems. 568--576.Google ScholarGoogle Scholar
  42. Samuli Laine, Janne Hellsten, Tero Karras, Yeongho Seol, Jaakko Lehtinen, and Timo Aila. 2020. Modular primitives for high-performance differentiable rendering. ACM Trans. Graph. (Proc. SIGGRAPH Asia) 39, 6 (2020), 1--14.Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. Kai Lawonn and Tobias Günther. 2019. Stylized Image Triangulation. In Computer Graphics Forum, Vol. 38. Wiley Online Library, 221--234.Google ScholarGoogle Scholar
  44. Wonyeol Lee, Hangyeol Yu, Xavier Rival, and Hongseok Yang. 2020. On Correctness of Automatic Differentiation for Non-Differentiable Functions. In Advances in Neural Information Processing Systems.Google ScholarGoogle Scholar
  45. Wonyeol Lee, Hangyeol Yu, and Hongseok Yang. 2018. Reparameterization gradient for non-differentiable models. In Advances in Neural Information Processing Systems. 5553--5563.Google ScholarGoogle Scholar
  46. Alexander K Lew, Marco F Cusumano-Towner, Benjamin Sherman, Michael Carbin, and Vikash K Mansinghka. 2019. Trace types and denotational semantics for sound programmable inference in probabilistic languages. Proc. ACM Program. Lang. 4, POPL (2019), 1--32.Google ScholarGoogle Scholar
  47. Minchen Li, Zachary Ferguson, Teseo Schneider, Timothy Langlois, Denis Zorin, Daniele Panozzo, Chenfanfu Jiang, and Danny M Kaufman. 2020a. Incremental potential contact: Intersection-and inversion-free, large-deformation dynamics. ACM Trans. Graph. (Proc. SIGGRAPH) (2020).Google ScholarGoogle ScholarDigital LibraryDigital Library
  48. Tzu-Mao Li. 2019. Differentiable Visual Computing. Ph.D. Dissertation. Massachusetts Institute of Technology. Advisor(s) Durand, Frédo.Google ScholarGoogle Scholar
  49. Tzu-Mao Li, Miika Aittala, Frédo Durand, and Jaakko Lehtinen. 2018a. Differentiable Monte Carlo Ray Tracing through Edge Sampling. ACM Trans. Graph. (Proc. SIGGRAPH Asia) 37, 6 (2018), 222:1--222:11.Google ScholarGoogle Scholar
  50. Tzu-Mao Li, Michaël Gharbi, Andrew Adams, Frédo Durand, and Jonathan Ragan-Kelley. 2018b. Differentiable programming for image processing and deep learning in Halide. ACM Trans. Graph. (Proc. SIGGRAPH) 37, 4 (2018), 139:1--139:13.Google ScholarGoogle ScholarDigital LibraryDigital Library
  51. Tzu-Mao Li, Michal Lukáč, Gharbi Michaël, and Jonathan Ragan-Kelley. 2020b. Differentiable Vector Graphics Rasterization for Editing and Learning. ACM Trans. Graph. (Proc. SIGGRAPH Asia) 39, 6 (2020), 193:1--193:15.Google ScholarGoogle Scholar
  52. Peng Lin, Yonggang Hao, Baoyou Zhang, Shuzhi Zhang, and Jun Shen. 2017. Strain rate sensitivity of Ti-22Al-25Nb (at.alloy during high temperature deformation. Materials Science and Engineering: A (2017).Google ScholarGoogle Scholar
  53. Seppo Linnainmaa. 1970. The representation of the cumulative rounding error of an algorithm as a Taylor expansion of the local rounding errors. Master's thesis. Univ. Helsinki.Google ScholarGoogle Scholar
  54. Shichen Liu, Tianye Li, Weikai Chen, and Hao Li. 2019. Soft Rasterizer: A Differentiable Renderer for Image-based 3D Reasoning. International Conference on Computer Vision (2019).Google ScholarGoogle ScholarCross RefCross Ref
  55. Matthew M. Loper and Michael J. Black. 2014. OpenDR: An Approximate Differentiable Renderer. In European Conference on Computer Vision, Vol. 8695. ACM, 154--169.Google ScholarGoogle Scholar
  56. Guillaume Loubet, Nicolas Holzschuch, and Wenzel Jakob. 2019. Reparameterizing discontinuous integrands for differentiable rendering. ACM Trans. Graph. (Proc. SIGGRAPH Asia) 38, 6 (2019), 228.Google ScholarGoogle Scholar
  57. Damiano Mazza and Michele Pagani. 2021. Automatic differentiation in PCF. Proceedings of the ACM on Programming Languages 5 (2021), 1--27.Google ScholarGoogle ScholarDigital LibraryDigital Library
  58. Antoine McNamara, Adrien Treuille, Zoran Popović, and Jos Stam. 2004. Fluid control using the adjoint method. ACM Trans. Graph. (Proc. SIGGRAPH) 23, 3 (2004), 449--456.Google ScholarGoogle ScholarDigital LibraryDigital Library
  59. Brian Vincent Mirtich. 1996. Impulse-based dynamic simulation of rigid body systems. University of California, Berkeley.Google ScholarGoogle ScholarDigital LibraryDigital Library
  60. Don P Mitchell and Arun N Netravali. 1988. Reconstruction filters in computer-graphics. Comput. Graph. (Proc. SIGGRAPH) 22, 4 (1988), 221--228.Google ScholarGoogle ScholarDigital LibraryDigital Library
  61. Igor Mordatch, Emanuel Todorov, and Zoran Popović. 2012. Discovery of Complex Behaviors through Contact-Invariant Optimization. ACM Trans. Graph. (Proc. SIGGRAPH) 31, 4 (2012).Google ScholarGoogle ScholarDigital LibraryDigital Library
  62. Igor Mordatch, Jack M Wang, Emanuel Todorov, and Vladlen Koltun. 2013. Animating human lower limbs using contact-invariant optimization. ACM Trans. Graph. 32, 6 (2013), 1--8.Google ScholarGoogle ScholarDigital LibraryDigital Library
  63. Henry P Moreton and Carlo H Séquin. 1992. Functional optimization for fair surface design. Comput. Graph. (Proc. SIGGRAPH) 26, 2 (1992), 167--176.Google ScholarGoogle ScholarDigital LibraryDigital Library
  64. Merlin Nimier-David, Delio Vicini, Tizian Zeltner, and Wenzel Jakob. 2019. Mitsuba 2: A retargetable forward and inverse renderer. ACM Trans. Graph. (Proc. SIGGRAPH Asia) 38, 6 (2019), 1--17.Google ScholarGoogle ScholarDigital LibraryDigital Library
  65. Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. 2019. PyTorch: An Imperative Style, High-Performance Deep Learning Library. In Advances in Neural Information Processing Systems. 8024--8035.Google ScholarGoogle ScholarDigital LibraryDigital Library
  66. Barak A. Pearlmutter and Jeffrey Mark Siskind. 2008. Reverse-mode AD in a Functional Framework: Lambda the Ultimate Backpropagator. Trans. Program. Lang. Syst. 30, 2 (2008), 7:1--7:36.Google ScholarGoogle Scholar
  67. Ken Perlin. 1985. An image synthesizer. Comput. Graph. (Proc. SIGGRAPH) 19, 3 (1985), 287--296.Google ScholarGoogle ScholarDigital LibraryDigital Library
  68. Jovan Popović, Steven M Seitz, Michael Erdmann, Zoran Popović, and Andrew Witkin. 2000. Interactive manipulation of rigid body simulations. In SIGGRAPH. 209--217.Google ScholarGoogle Scholar
  69. Zoran Popović and Andrew Witkin. 1999. Physically based motion transformation. In Comput. Graph. (Proc. SIGGRAPH). 11--20.Google ScholarGoogle Scholar
  70. Michael Posa, Cecilia Cantu, and Russ Tedrake. 2014. A direct method for trajectory optimization of rigid bodies through contact. The International Journal of Robotics Research 33, 1 (2014), 69--81.Google ScholarGoogle ScholarDigital LibraryDigital Library
  71. Ravi Ramamoorthi, Dhruv Mahajan, and Peter Belhumeur. 2007. A First-order Analysis of Lighting, Shading, and Shadows. ACM Trans. Graph. 26, 1 (2007), 2.Google ScholarGoogle ScholarDigital LibraryDigital Library
  72. Maxime Roger, Stéphane Blanco, Mouna El Hafi, and Richard Fournier. 2005. Monte Carlo estimates of domain-deformation sensitivities. Physical review letters 95, 18 (2005), 180601.Google ScholarGoogle Scholar
  73. L. Schwartz. 1950. Théorie des distributions. Number v. 2 in Actualités scientifiques et industrielles. Hermann.Google ScholarGoogle Scholar
  74. L. Schwartz. 1954. Sur l'impossibilité de la multiplication des distributions. C. R. Acad. Sci. Paris (1954).Google ScholarGoogle Scholar
  75. Benjamin Sherman, Jesse Michel, and Michael Carbin. 2021. λS: Computable semantics for differentiable programming with higher-order functions and datatypes. Proc. ACM Program. Lang. 5, POPL, Article 3 (2021), 31 pages.Google ScholarGoogle Scholar
  76. Liang Shi, Beichen Li, Miloš Hašan, Kalyan Sunkavalli, Tamy Boubekeur, Radomir Mech, and Wojciech Matusik. 2020. MATch: Differentiable Material Graphs for Procedural Material Capture. ACM Trans. Graph. (Proc. SIGGRAPH Asia) 39, 6 (2020), 1--15.Google ScholarGoogle ScholarDigital LibraryDigital Library
  77. Stan Development Team. 2015. Stan Modeling Language Users Guide and Reference Manual, Version 2.9.0. http://mc-stan.org/Google ScholarGoogle Scholar
  78. Robert F Stengel. 1994. Optimal control and estimation. Courier Corporation.Google ScholarGoogle Scholar
  79. J. Tabin, B. Skoczen, and J. Bielski. 2016. Strain localization during discontinuous plastic flow at extremely low temperatures. International Journal of Solids and Structures (2016).Google ScholarGoogle Scholar
  80. Emanuel Todorov. 2011. A convex, smooth and invertible contact model for trajectory optimization. In International Conference on Robotics and Automation. IEEE, 1071--1076.Google ScholarGoogle ScholarCross RefCross Ref
  81. Christopher D. Twigg and Doug L. James. 2008. Backward Steps in Rigid Body Simulation. ACM Trans. Graph. (Proc. SIGGRAPH), Article 25 (2008).Google ScholarGoogle Scholar
  82. Kiwon Um, Robert Brand, Yun Fei, Philipp Holl, and Nils Thuerey. 2020. Solver-in-the-Loop: Learning from Differentiable Physics to Interact with Iterative PDE-Solvers. Advances in Neural Information Processing Systems (2020).Google ScholarGoogle Scholar
  83. Eric Veach. 1998. Robust Monte Carlo Methods for Light Transport Simulation. Ph.D. Dissertation. Stanford University. Advisor(s) Guibas, Leonidas J.Google ScholarGoogle ScholarDigital LibraryDigital Library
  84. William Welch and Andrew Witkin. 1992. Variational surface modeling. Comput. Graph. (Proc. SIGGRAPH) 26, 2 (1992), 157--166.Google ScholarGoogle ScholarDigital LibraryDigital Library
  85. R. E. Wengert. 1964. A Simple Automatic Derivative Evaluation Program. Commun. ACM 7, 8 (1964), 463--464.Google ScholarGoogle ScholarDigital LibraryDigital Library
  86. Andrew Witkin and Michael Kass. 1988. Spacetime constraints. ACM Trans. Graph. (Proc. SIGGRAPH) 22, 4 (1988), 159--168.Google ScholarGoogle ScholarDigital LibraryDigital Library
  87. Lifan Wu, Guangyan Cai, Shuang Zhao, and Ravi Ramamoorthi. 2020. Analytic spherical harmonic gradients for real-time rendering with many polygonal area lights. ACM Trans. Graph. (Proc. SIGGRAPH) 39, 4 (2020), 134.Google ScholarGoogle ScholarDigital LibraryDigital Library
  88. Dong Yu, Adam Eversole, Mike Seltzer, Kaisheng Yao, Oleksii Kuchaiev, Yu Zhang, Frank Seide, Zhiheng Huang, Brian Guenter, Huaming Wang, Jasha Droppo, Geoffrey Zweig, Chris Rossbach, Jie Gao, Andreas Stolcke, Jon Currey, Malcolm Slaney, Guoguo Chen, Amit Agarwal, Chris Basoglu, Marko Padmilac, Alexey Kamenev, Vladimir Ivanov, Scott Cypher, Hari Parthasarathi, Bhaskar Mitra, Baolin Peng, and Xuedong Huang. 2014. An Introduction to Computational Networks and the Computational Network Toolkit. Technical Report. Microsoft Research.Google ScholarGoogle Scholar
  89. Dofl Y.H. Yun. 2013. DMesh, Triangulation Image Generator. http://dmesh.thedofl.com/ Accessed: 2021-01-26.Google ScholarGoogle Scholar
  90. Cheng Zhang, Bailey Miller, Kai Yan, Ioannis Gkioulekas, and Shuang Zhao. 2020. Path-space Differentiable Rendering. ACM Trans. Graph. (Proc. SIGGRAPH) 39, 6 (2020), 143:1--143:19.Google ScholarGoogle ScholarDigital LibraryDigital Library
  91. Cheng Zhang, Lifan Wu, Changxi Zheng, Ioannis Gkioulekas, Ravi Ramamoorthi, and Shuang Zhao. 2019. A differential theory of radiative transfer. ACM Trans. Graph. (Proc. SIGGRAPH Asia) 38, 6 (2019), 227.Google ScholarGoogle Scholar
  92. Yuan Zhou, Bradley J. Gram-Hansen, Tobias Kohn, Tom Rainforth, Hongseok Yang, and Frank Wood. 2019. LF-PPL: A Low-Level First Order Probabilistic Programming Language for Non-Differentiable Models. In International Conference on Artificial Intelligence and Statistics (AISTATS), Vol. 89. PMLR, 148--157.Google ScholarGoogle Scholar

Index Terms

  1. Systematically differentiating parametric discontinuities

                  Recommendations

                  Comments

                  Login options

                  Check if you have access through your login credentials or your institution to get full access on this article.

                  Sign in

                  Full Access

                  PDF Format

                  View or Download as a PDF file.

                  PDF

                  eReader

                  View online with eReader.

                  eReader