skip to main content
research-article

Direct delta mush skinning compression with continuous examples

Published:19 July 2021Publication History
Skip Abstract Section

Abstract

Direct Delta Mush (DDM) is a high-quality, direct skinning method with a low setup cost. However, its storage and run-time computing cost are relatively high for two reasons: its skinning weights are 4 X 4 matrices instead of scalars like other direct skinning methods, and its computation requires one 3 X 3 Singular Value Decomposition per vertex.

In this paper, we introduce a compression method that takes a DDM model and splits it into two layers: the first layer is a smaller DDM model that computes a set of virtual bone transformations and the second layer is a Linear Blend Skinning model that computes per-vertex transformations from the output of the first layer. The two-layer model can approximate the deformation of the original DDM model with significantly lower costs.

Our main contribution is a novel problem formulation for the DDM compression based on a continuous example-based technique, in which we minimize the compression error on an uncountable set of example poses. This formulation provides an elegant metric for the compression error and simplifies the problem to the common linear matrix factorization. Our formulation also takes into account the skeleton hierarchy of the model, the bind pose, and the range of motions. In addition, we propose a new update rule to optimize DDM weights of the first layer and a modification to resolve the floating-point cancellation issue of DDM.

Skip Supplemental Material Section

Supplemental Material

3450626.3459779.mp4
a72-le.mp4

References

  1. M. Aharon, M. Elad, and A. Bruckstein. 2006. K -SVD: An Algorithm for Designing Overcomplete Dictionaries for Sparse Representation. IEEE Trans. Sig. Proc. 54, 11 (Nov. 2006), 4311--4322. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Marc Alexa. 2002. Linear Combination of Transformations. ACM Trans. Graph. 21, 3 (July 2002), 380--387. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Dragomir Anguelov, Praveen Srinivasan, Daphne Koller, Sebastian Thrun, Jim Rodgers, and James Davis. 2005. SCAPE: Shape Completion and Animation of People. ACM Trans. Graph. 24, 3 (July 2005), 408--416. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Paolo Baerlocher. 2001. Inverse kinematics techniques of the interactive posture control of articulated figures. Ph.D. Dissertation. École Polytechnique Fédérale de Lausanne. Google ScholarGoogle ScholarCross RefCross Ref
  5. Stephen W. Bailey, Dave Otte, Paul Dilorenzo, and James F. O'Brien. 2018. Fast and Deep Deformation Approximations. ACM Trans. Graph. 37, 4, Article 119 (July 2018). Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Ake Bjorck. 1996. Numerical methods for least squares problems. Google ScholarGoogle ScholarCross RefCross Ref
  7. Wei-Wen Feng, Byung-Uck Kim, and Yizhou Yu. 2008. Real-time Data Driven Deformation Using Kernel Canonical Correlation Analysis. ACM Trans. Graph. 27, 3, Article 91 (Aug. 2008). Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Lin Gao, Yu-Kun Lai, Dun Liang, Shu-Yu Chen, and Shihong Xia. 2016. Efficient and Flexible Deformation Representation for Data-Driven Surface Modeling. ACM Trans. Graph. 35, 5, Article 158 (July 2016). Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Fabian Hahn, Sebastian Martin, Bernhard Thomaszewski, Robert Sumner, Stelian Coros, and Markus Gross. 2012. Rig-space Physics. ACM Trans. Graph. 31, 4, Article 72 (July 2012). Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Fabian Hahn, Bernhard Thomaszewski, Stelian Coros, Robert W. Sumner, and Markus Gross. 2013. Efficient Simulation of Secondary Motion in Rig-space. In Proc. of ACM/Eurographics Symposium on Computer Animation (SCA 2013). 165--171. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Nils Hasler, Thorsten Thormählen, Bodo Rosenhahn, and Hans-Peter Seidel. 2010. Learning Skeletons for Shape and Pose. In Proc. of ACM Symposium on Interactive 3D Graphics and Games (I3D 2010). Association for Computing Machinery, New York, NY, USA, 23--30. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Alexandru-Eugen Ichim, Petr Kadleček, Ladislav Kavan, and Mark Pauly. 2017. Phace: Physics-based Face Modeling and Animation. ACM Trans. Graph. 36, 4, Article 153 (July 2017). Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Alec Jacobson, Ilya Baran, Ladislav Kavan, Jovan Popović, and Olga Sorkine. 2012. Fast Automatic Skinning Transformations. ACM Trans. Graph. 31, 4, Article 77 (July 2012). Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Alec Jacobson, Ilya Baran, Jovan Popović, and Olga Sorkine. 2011. Bounded Biharmonic Weights for Real-Time Deformation. ACM Trans. Graph. 30, 4, Article 78 (July 2011). Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Alec Jacobson, Zhigang Deng, Ladislav Kavan, and JP Lewis. 2014. Skinning: Real-time Shape Deformation. In ACM SIGGRAPH 2014 Courses. http://skinning.org/Google ScholarGoogle Scholar
  16. Alec Jacobson and Olga Sorkine. 2011. Stretchable and Twistable Bones for Skeletal Shape Deformation. ACM Trans. Graph. 30, 6 (Dec. 2011). Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Doug L. James and Christopher D. Twigg. 2005. Skinning Mesh Animations. ACM Trans. Graph. 24, 3 (July 2005), 399--407. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Ben Jones, Nils Thuerey, Tamar Shinar, and Adam W. Bargteil. 2016. Example-based Plastic Deformation of Rigid Bodies. ACM Trans. Graph. 35, 4, Article 34 (July 2016). Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Petr Kadleček, Alexandru-Eugen Ichim, Tiantian Liu, Jaroslav Křivánek, and Ladislav Kavan. 2016. Reconstructing Personalized Anatomical Models for Physics-based Body Animation. ACM Trans. Graph. 35, 6, Article 213 (Nov. 2016). Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Ladislav Kavan, Steven Collins, and Carol O'Sullivan. 2009. Automatic Linearization of Nonlinear Skinning. In Proc. of ACM Symposium on Interactive 3D Graphics and Games (I3D 2009). 49--56. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Ladislav Kavan, Steven Collins, Jiří Žára, and Carol O'Sullivan. 2008. Geometric Skinning with Approximate Dual Quaternion Blending. ACM Trans. Graph. 27, 4, Article 105 (Nov. 2008). Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. L. Kavan, P.-P. Sloan, and C. O'Sullivan. 2010. Fast and Efficient Skinning of Animated Meshes. Computer Graphics Forum 29, 2 (2010), 327--336. Google ScholarGoogle ScholarCross RefCross Ref
  23. Ladislav Kavan and Olga Sorkine. 2012. Elasticity-Inspired Deformers for Character Articulation. ACM Trans. Graph. 31, 6, Article 196 (Nov. 2012). Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Ladislav Kavan and Jiří Žára. 2005. Spherical Blend Skinning: A Real-time Deformation of Articulated Models. In Proc. ACM Symposium on Interactive 3D Graphics and Games (I3D 2005). 9--16. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Hyunsoo Kim and Haesun Park. 2008. Nonnegative Matrix Factorization Based on Alternating Nonnegativity Constrained Least Squares and Active Set Method. SIAM J. Matrix Anal. Appl. 30, 2 (July 2008), 713--730. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Paul G. Kry, Doug L. James, and Dinesh K. Pai. 2002. EigenSkin: Real Time Large Deformation Character Skinning in Hardware. In Proc. of ACM/Eurographics Symposium on Computer Animation (SCA 2002). 153--159. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Eric Landreneau and Scott Schaefer. 2010. Poisson-Based Weight Reduction of Animated Meshes. Computer Graphics Forum 29, 6 (2010), 1945--1954. Google ScholarGoogle ScholarCross RefCross Ref
  28. Binh Huy Le and Zhigang Deng. 2012. Smooth Skinning Decomposition with Rigid Bones. ACM Trans. Graph. 31, 6, Article 199 (Nov. 2012). Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Binh Huy Le and Zhigang Deng. 2013. Two-layer Sparse Compression of Dense-weight Blend Skinning. ACM Trans. Graph. 32, 4, Article 124 (July 2013). Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Binh Huy Le and Zhigang Deng. 2014. Robust and Accurate Skeletal Rigging from Mesh Sequences. ACM Trans. Graph. 33, 4, Article 84 (July 2014). Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Binh Huy Le and Jessica K. Hodgins. 2016. Real-time Skeletal Skinning with Optimized Centers of Rotation. ACM Trans. Graph. 35, 4, Article 37 (July2016). Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Binh Huy Le and J P Lewis. 2019. Direct Delta Mush Skinning and Variants. ACM Trans. Graph. 38, 4, Article 113 (July 2019). Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Daniel D. Lee and H. Sebastian Seung. 2000. Algorithms for Non-Negative Matrix Factorization. In Proc. of International Conference on Neural Information Processing (NIPS 2000). 535--541.Google ScholarGoogle Scholar
  34. Sung-Hee Lee, Eftychios Sifakis, and Demetri Terzopoulos. 2009. Comprehensive Biomechanical Modeling and Simulation of the Upper Body. ACM Trans. Graph. 28, 4, Article 99 (Sept. 2009). Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. J. P. Lewis, Matt Cordner, and Nickson Fong. 2000. Pose Space Deformation: A Unified Approach to Shape Interpolation and Skeleton-driven Deformation. In Proc. of International Conference on Computer Graphics and Interactive Techniques (SIGGRAPH 2000). 165--172. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Duo Li, Shinjiro Sueda, Debanga R. Neog, and Dinesh K. Pai. 2013. Thin Skin Elastodynamics. ACM Trans. Graph. 32, 4, Article 49 (July 2013). Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Libin Liu, KangKang Yin, Bin Wang, and Baining Guo. 2013. Simulation and Control of Skeleton-driven Soft Body Characters. ACM Trans. Graph. 32, 6, Article 215 (Nov. 2013). Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. S. Lloyd. 1982. Least Squares Quantization in PCM. IEEE Transactions on Information Theory 28, 2 (Sept. 1982), 129--137. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Matthew Loper, Naureen Mahmood, and Michael J. Black. 2014. MoSh: Motion and Shape Capture from Sparse Markers. ACM Trans. Graph. 33, 6, Article 220 (Nov. 2014). Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Matthew Loper, Naureen Mahmood, Javier Romero, Gerard Pons-Moll, and Michael J. Black. 2015. SMPL: A Skinned Multi-person Linear Model. ACM Trans. Graph. 34, 6, Article 248 (Oct. 2015). Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. N. Magnenat-Thalmann, F. Cordier, Hyewon Seo, and G. Papagianakis. 2004. Modeling of bodies and clothes for virtual environments. In IEEE International Conference on Cyberworlds (CW 2004). 201--208. Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. N. Magnenat-Thalmann, R. Laperrière, and D. Thalmann. 1988. Joint-dependent Local Deformations for Hand Animation and Object Grasping. In Proc. on Graphics Interface (GI 1988). 26--33. http://dl.acm.org/citation.cfm?id=102313.102317Google ScholarGoogle Scholar
  43. Julien Mairal, Francis Bach, Jean Ponce, and Guillermo Sapiro. 2010. Online Learning for Matrix Factorization and Sparse Coding. Journal of Machine Learning Research 11 (March 2010), 19--60. http://dl.acm.org/citation.cfm?id=1756006.1756008Google ScholarGoogle Scholar
  44. Joe Mancewicz, Matt L. Derksen, Hans Rijpkema, and Cyrus A. Wilson. 2014. Delta Mush: Smoothing Deformations While Preserving Detail. In Proc. of ACM Symposium on Digital Production (DigiPro 2014). 7--11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. Aleka McAdams, Andrew Selle, Rasmus Tamstorf, Joseph Teran, and Eftychios Sifakis. 2011a. Computing the singular value decomposition of 3x3 matrices with minimal branching and elementary floating point operations. Technical Report. University of Wisconsin-Madison.Google ScholarGoogle Scholar
  46. Aleka McAdams, Yongning Zhu, Andrew Selle, Mark Empey, Rasmus Tamstorf, Joseph Teran, and Eftychios Sifakis. 2011b. Efficient Elasticity for Character Skinning with Contact and Collisions. ACM Trans. Graph. 30, 4, Article 37 (July 2011). Google ScholarGoogle ScholarDigital LibraryDigital Library
  47. Alex Mohr and Michael Gleicher. 2003. Building Efficient, Accurate Character Skins from Examples. ACM Trans. Graph. 22, 3 (July 2003), 562--568. Google ScholarGoogle ScholarDigital LibraryDigital Library
  48. Tomohiko Mukai. 2015. Building Helper Bone Rigs from Examples. In Proc. of ACM Symposium on Interactive 3D Graphics and Games (I3D 2015). 77--84. Google ScholarGoogle ScholarDigital LibraryDigital Library
  49. Tomohiko Mukai and Shigeru Kuriyama. 2016. Efficient Dynamic Skinning with Low-rank Helper Bone Controllers. ACM Trans. Graph. 35, 4, Article 36 (July 2016). Google ScholarGoogle ScholarDigital LibraryDigital Library
  50. Olivier Rémillard and Paul G. Kry. 2013. Embedded Thin Shells for Wrinkle Simulation. ACM Trans. Graph. 32, 4, Article 50 (July 2013). Google ScholarGoogle ScholarDigital LibraryDigital Library
  51. Shunsuke Saito, Zi-Ye Zhou, and Ladislav Kavan. 2015. Computational Bodybuilding: Anatomically-based Modeling of Human Bodies. ACM Trans. Graph. 34, 4, Article 41 (July 2015). Google ScholarGoogle ScholarDigital LibraryDigital Library
  52. Thomas Schlömer, Daniel Heck, and Oliver Deussen. 2011. Farthest-Point Optimized Point Sets with Maximized Minimum Distance. In Proc. of ACM SIGGRAPH Symposium on High Performance Graphics (HPG 2011). 135--142. Google ScholarGoogle ScholarDigital LibraryDigital Library
  53. Peter-Pike J. Sloan, Charles F. Rose, III, and Michael F. Cohen. 2001. Shape by Example. In Proc. of ACM Symposium on Interactive 3D Graphics and Games (I3D 2001). 135--143. Google ScholarGoogle ScholarDigital LibraryDigital Library
  54. Breannan Smith, Fernando De Goes, and Theodore Kim. 2018. Stable Neo-Hookean Flesh Simulation. ACM Trans. Graph. 37, 2, Article 12 (March 2018). Google ScholarGoogle ScholarDigital LibraryDigital Library
  55. Olga Sorkine and Marc Alexa. 2007. As-Rigid-as-Possible Surface Modeling. In Proc. of Eurographics Symposium on Geometry Processing (SGP 2007). 109--116.Google ScholarGoogle Scholar
  56. Robert W. Sumner and Jovan Popović. 2004. Deformation Transfer for Triangle Meshes. ACM Trans. Graph. 23, 3 (Aug. 2004), 399--405. Google ScholarGoogle ScholarDigital LibraryDigital Library
  57. Robert W. Sumner, Matthias Zwicker, Craig Gotsman, and Jovan Popović. 2005. Mesh-based Inverse Kinematics. ACM Trans.Graph. 24, 3 (July 2005), 488--495. Google ScholarGoogle ScholarDigital LibraryDigital Library
  58. Joseph Teran, Eftychios Sifakis, Geoffrey Irving, and Ronald Fedkiw. 2005. Robust Quasistatic Finite Elements and Flesh Simulation. In Proc. of ACM/Eurographics Symposium on Computer Animation (SCA 2005). 181--190. Google ScholarGoogle ScholarDigital LibraryDigital Library
  59. Rodolphe Vaillant, Loïc Barthe, Gaël Guennebaud, Marie-Paule Cani, Damien Rohmer, Brian Wyvill, Olivier Gourmel, and Mathias Paulin. 2013. Implicit Skinning: Real-time Skin Deformation with Contact Modeling. ACM Trans. Graph. 32, 4, Article 125 (July 2013). Google ScholarGoogle ScholarDigital LibraryDigital Library
  60. Rodolphe Vaillant, Gäel Guennebaud, Loïc Barthe, Brian Wyvill, and Marie-Paule Cani. 2014. Robust Iso-surface Tracking for Interactive Character Skinning. ACM Trans. Graph. 33, 6, Article 189 (Nov. 2014). Google ScholarGoogle ScholarDigital LibraryDigital Library
  61. Robert Y. Wang, Kari Pulli, and Jovan Popović. 2007. Real-time Enveloping with Rotational Regression. ACM Trans. Graph. 26, 3, Article 73 (July 2007). Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Direct delta mush skinning compression with continuous examples

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in

    Full Access

    • Published in

      cover image ACM Transactions on Graphics
      ACM Transactions on Graphics  Volume 40, Issue 4
      August 2021
      2170 pages
      ISSN:0730-0301
      EISSN:1557-7368
      DOI:10.1145/3450626
      Issue’s Table of Contents

      Copyright © 2021 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 19 July 2021
      Published in tog Volume 40, Issue 4

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader