skip to main content
research-article
Open Access

Computational inverse design of surface-based inflatables

Published:19 July 2021Publication History
Skip Abstract Section

Abstract

We present a computational inverse design method for a new class of surface-based inflatable structure. Our deployable structures are fabricated by fusing together two layers of inextensible sheet material along carefully selected curves. The fusing curves form a network of tubular channels that can be inflated with air or other fluids. When fully inflated, the initially flat surface assumes a programmed double-curved shape and becomes stiff and load-bearing. We present a method that solves for the layout of air channels that, when inflated, best approximate a given input design. For this purpose, we integrate a forward simulation method for inflation with a gradient-based optimization algorithm that continuously adapts the geometry of the air channels to improve the design objectives. To initialize this non-linear optimization, we propose a novel surface flattening algorithm. When a channel is inflated, it approximately maintains its length, but contracts transversally to its main direction. Our algorithm approximates this deformation behavior by computing a mapping from the 3D design surface to the plane that allows for anisotropic metric scaling within the bounds realizable by the physical system. We show a wide variety of inflatable designs and fabricate several prototypes to validate our approach and highlight potential applications.

Skip Supplemental Material Section

Supplemental Material

3450626.3459789.mov
a40-panetta.mp4

References

  1. Hillel Aharoni, Eran Sharon, and Raz Kupferman. 2014. Geometry of Thin Nematic Elastomer Sheets. Phys. Rev. Lett. 113 (Dec 2014), 257801. Issue 25. Google ScholarGoogle ScholarCross RefCross Ref
  2. Hillel Aharoni, Yu Xia, Xinyue Zhang, and Shu Kamien, Randall D. and Yang. 2018. Universal inverse design of surfaces with thin nematic elastomer sheets. Proceedings of the National Academy of Sciences of the United States of America 115, 28 (2018).Google ScholarGoogle ScholarCross RefCross Ref
  3. Marco Attene, Marco Livesu, Sylvain Lefebvre, Thomas Funkhouser, Stefano Ellero, Szymon Rusinkiewicz, Jonàs Martínez, and Amit Haim Bermano. 2018. Design, Representations, and Processing for Additive Manufacturing. Vol. 10. Morgan & Claypool Publishers. 146 pages. https://hal.inria.fr/hal-01836525Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Amit H. Bermano, Thomas Funkhouser, and Szymon Rusinkiewicz. 2017. State of the Art in Methods and Representations for Fabrication-Aware Design. Comput. Graph. Forum 36, 2 (May 2017), 509--535. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Katia Bertoldi, Vincenzo Vitelli, Johan Christensen, and Martin van Hecke. 2017. Flexible mechanical metamaterials. Nature Reviews Materials 2 (17 10 2017), 17066 EP -. Google ScholarGoogle ScholarCross RefCross Ref
  6. Bernd Bickel, Paolo Cignoni, Luigi Malomo, and Nico Pietroni. 2018. State of the Art on Stylized Fabrication. Computer Graphics Forum (2018). Google ScholarGoogle ScholarCross RefCross Ref
  7. J. William Boley, Wim M. van Rees, Charles Lissandrello, Mark N. Horenstein, Ryan L. Truby, Arda Kotikian, Jennifer A. Lewis, and L. Mahadevan. 2019. Shape-shifting structured lattices via multimaterial 4D printing. Proceedings of the National Academy of Sciences 116, 42 (2019), 20856--20862. arXiv:https://www.pnas.org/content/116/42/20856.full.pdf Google ScholarGoogle ScholarCross RefCross Ref
  8. Mario Botsch, Leif Kobbelt, Mark Pauly, Pierre Alliez, and Bruno Levy. 2010. Polygon Mesh Processing. AK Peters.Google ScholarGoogle Scholar
  9. Paolo Celli, Connor McMahan, Brian Ramirez, Anton Bauhofer, Christina Naify, Douglas Hofmann, Basile Audoly, and Chiara Daraio. 2018. Shape-morphing architected sheets with non-periodic cut patterns. Soft matter (2018).Google ScholarGoogle Scholar
  10. Yanqing Chen, Timothy A Davis, William W Hager, and Sivasankaran Rajamanickam. 2008. Algorithm 887: CHOLMOD, supernodal sparse Cholesky factorization and update/downdate. ACM Transactions on Mathematical Software (TOMS) 35, 3 (2008), 22.Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Keenan Crane. 2015. stripe: A vector field editor and stripe pattern generator. http://www.cs.cmu.edu/kmcrane/Projects/StripePatterns/code.zip.Google ScholarGoogle Scholar
  12. Erik D. Demaine and Joseph O'Rourke. 2008. Geometric Folding Algorithms: Linkages, Origami, Polyhedra (reprint ed.). Cambridge University Press, USA.Google ScholarGoogle Scholar
  13. R.P. Feynman, R.B. Leighton, and M.L. Sands. 1963. The Feynman Lectures on Physics. Number Bd. 1 in The Feynman Lectures on Physics. Addison-Wesley. https://books.google.ch/books?id=UtJEAAAAIAAJGoogle ScholarGoogle Scholar
  14. Akash Garg, Andrew O. Sageman-Furnas, Bailin Deng, Yonghao Yue, Eitan Grinspun, Mark Pauly, and Max Wardetzky. 2014. Wire Mesh Design. ACM Trans. Graph. 33, 4, Article 66 July 2014), 12 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. S. A. Gladman, Elisabetta A. Matsumoto, Ralph G. Nuzzo, L. Mahadevan, and Jennifer A. Lewis. 2016. Biomimetic 4D printing. Nature Materials 15 (25 01 2016), 413 EP -. Google ScholarGoogle ScholarCross RefCross Ref
  16. Eitan Grinspun, Anil N. Hirani, Mathieu Desbrun, and Peter Schröder. 2003. Discrete Shells. In Proceedings of the 2003 ACM SIGGRAPH/Eurographics Symposium on Computer Animation (San Diego, California).Google ScholarGoogle Scholar
  17. Ruslan Guseinov, Eder Miguel, and Bernd Bickel. 2017. CurveUps: Shaping Objects from Flat Plates with Tension-actuated Curvature. ACM Trans. Graph. 36, 4, Article 64 (July 2017), 12 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Alec Jacobson, Daniele Panozzo, et al. 2018. libigl: A simple C++ geometry processing library. https://libigl.github.io/.Google ScholarGoogle Scholar
  19. Martin Kilian, Simon Flöry, Zhonggui Chen, Niloy J. Mitra, Alla Sheffer, and Helmut Pottmann. 2008. Curved Folding. ACM Trans. Graph. 27, 3, Article 75 (Aug. 2008), 9 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Martin Kilian, Aron Monszpart, and Niloy J. Mitra. 2017. String Actuated Curved Folded Surfaces. ACM Trans. Graph. 36, 4, Article 64a (May 2017). Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Felix Knöppel, Keenan Crane, Ulrich Pinkall, and Peter Schröder. 2015. Stripe Patterns on Surfaces. ACM Trans. Graph. 34, 4, Article 39 (July 2015), 11 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Mina Konaković, Keenan Crane, Bailin Deng, Sofien Bouaziz, Daniel Piker, and Mark Pauly. 2016. Beyond Developable: Computational Design and Fabrication with Auxetic Materials. ACM Trans. Graph. 35, 4, Article 89 July 2016), 11 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Mina Konaković-Luković, Pavle Konaković, and Mark Pauly. 2018a. Computational Design of Deployable Auxetic Shells. In Advances in Architectural Geometry 2018. 94--111.Google ScholarGoogle Scholar
  24. Mina Konaković-Luković, Julian Panetta, Keenan Crane, and Mark Pauly. 2018b. Rapid Deployment of Curved Surfaces via Programmable Auxetics. ACM Trans. Graph. (Aug. 2018).Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Mickaël Ly, Romain Casati, Florence Bertails-Descoubes, Mélina Skouras, and Laurence Boissieux. 2018. Inverse Elastic Shell Design with Contact and Friction. ACM Trans. Graph. 37, 6, Article 201 (Dec. 2018), 16 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Li-Ke Ma, Yizhonc Zhang, Yang Liu, Kun Zhou, and Xin Tong. 2017. Computational Design and Fabrication of Soft Pneumatic Objects with Desired Deformations. ACM Trans. Graph. 36, 6, Article 239 (Nov. 2017), 12 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Luigi Malomo, Jesús Pérez, Emmanuel Iarussi, Nico Pietroni, Eder Miguel, Paolo Cignoni, and Bernd Bickel. 2018. FlexMaps: Computational Design of Flat Flexible Shells for Shaping 3D Objects. ACM Trans. Graph. 37, 6, Article 241 (Dec. 2018), 14 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Bobak Mosadegh, Panagiotis Polygerinos, Christoph Keplinger, Sophia Wennstedt, Robert F. Shepherd, Unmukt Gupta, Jongmin Shim, Katia Bertoldi, Conor J. Walsh, and George M. Whitesides. 2014. Pneumatic Networks for Soft Robotics that Actuate Rapidly. Advanced Functional Materials 24, 15 (2014), 2163--2170. Google ScholarGoogle ScholarCross RefCross Ref
  29. Jifei Ou, Mélina Skouras, Nikolaos Vlavianos, Felix Heibeck, Chin-Yi Cheng, Jannik Peters, and Hiroshi Ishii. 2016. aeroMorph - Heat-sealing Inflatable Shape-change Materials for Interaction Design. In Proceedings of the 29th Annual Symposium on User Interface Software and Technology (Tokyo, Japan) (UIST '16). ACM, New York, NY, USA, 121--132. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. J. Panetta, M. Konaković-Luković, F. Isvoranu, E. Bouleau, and M. Pauly. 2019. X-Shells: A New Class of Deployable Beam Structures. ACM Trans. Graph. 38, 4, Article 83 July 2019), 15 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Daniele Panozzo, E Puppo, and L Rocca. 2010. Efficient multi-scale curvature and crease estimation. Proceedings of Computer Graphics, Computer Vision and Mathematics (Brno, Czech Rapubic 1, 6 (2010).Google ScholarGoogle Scholar
  32. Jesús Pérez, Miguel A. Otaduy, and Bernhard Thomaszewski. 2017. Computational Design and Automated Fabrication of Kirchhoff-plateau Surfaces. ACM Trans. Graph. 36, 4, Article 62 (July 2017), 12 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Stefan Pillwein, Kurt Leimer, Michael Birsak, and Przemyslaw Musialski. 2020. On Elastic Geodesic Grids and Their Planar to Spatial Deployment. ACM Trans. Graph. 39, 4, Article 125 July 2020), 12 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Nicolas Ray, Wan Chiu Li, Bruno Lévy, Alla Sheffer, and Pierre Alliez. 2006. Periodic Global Parameterization. ACM Trans. Graph. 25, 4 (Oct. 2006), 1460--1485. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Andrew O. Sageman-Furnas, Albert Chern, Mirela Ben-Chen, and Amir Vaxman. 2019. Chebyshev Nets from Commuting PolyVector Fields. ACM Trans. Graph. 38, 6, Article 172 (Nov. 2019), 16 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Jonathan Richard Shewchuk. 1996. Triangle: Engineering a 2D Quality Mesh Generator and Delaunay Triangulator. In Applied Computational Geometry: Towards Geometric Engineering, Ming C. Lin and Dinesh Manocha (Eds.). Lecture Notes in Computer Science, Vol. 1148. Springer-Verlag, 203--222.Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Yan Shi, Fan Zhang, Kewang Nan, Xueju Wang, Juntong Wang, Yijie Zhang, Yutong Zhang, Haiwen Luan, Keh-Chih Hwang, Yonggang Huang, John A. Rogers, and Yihui Zhang. 2017. Plasticity-induced origami for assembly of three dimensional metallic structures guided by compressive buckling. Extreme Mechanics Letters 11 (2017), 105 -- 110. Google ScholarGoogle ScholarCross RefCross Ref
  38. Emmanuel Siéfert, Etienne Reyssat, José Bico, and Benoît Roman. 2019a. Bio-inspired pneumatic shape-morphing elastomers. Nature Materials 18, 1 (2019), 24--28. Google ScholarGoogle ScholarCross RefCross Ref
  39. Emmanuel Siéfert, Etienne Reyssat, José Bico, and Benoît Roman. 2019b. Programming curvilinear paths of flat inflatables. Proceedings of the National Academy of Sciences 116, 34 (2019), 16692--16696. arXiv:https://www.pnas.org/content/116/34/16692.full.pdf Google ScholarGoogle ScholarCross RefCross Ref
  40. Emmanuel Siéfert, Etienne Reyssat, José Bico, and Benoît Roman. 2020. Programming stiff inflatable shells from planar patterned fabrics. Soft Matter 16 (2020), 7898--7903. Issue 34. Google ScholarGoogle ScholarCross RefCross Ref
  41. Mélina Skouras, Bernhard Thomaszewski, Bernd Bickel, and Markus Gross. 2012. Computational Design of Rubber Balloons. Comput. Graph. Forum 31, 2pt4 (May 2012), 835--844. Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. Mélina Skouras, Bernhard Thomaszewski, Peter Kaufmann, Akash Garg, Bernd Bickel, Eitan Grinspun, and Markus Gross. 2014. Designing Inflatable Structures. ACM Trans. Graph. 33, 4, Article 63 (July 2014), 10 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. T. Tachi. 2009. Origamizing Polyhedral Surfaces. IEEE Transactions on Visualization and Computer Graphics 16, 2 (2009), 298--311. Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. Tomohiro Tachi, Motoi Masubuchi, and M. Iwamoto. 2012. Rigid Origami Structures with Vacuumatics: Geometric Considerations. In IASS Proceedings.Google ScholarGoogle Scholar
  45. Michael T Tolley, Samuel M Felton, Shuhei Miyashita, Daniel Aukes, Daniela Rus, and Robert J Wood. 2014. Self-folding origami: shape memory composites activated by uniform heating. Smart Materials and Structures 23, 9 (aug 2014), 094006. Google ScholarGoogle ScholarCross RefCross Ref
  46. Wim M. van Rees, Etienne Vouga, and L. Mahadevan. 2017. Growth patterns for shape-shifting elastic bilayers. Proceedings of the National Academy of Sciences 114, 44 (2017), 11597--11602. Google ScholarGoogle ScholarCross RefCross Ref
  47. Amir Vaxman, Marcel Campen, Olga Diamanti, David Bommes, Klaus Hildebrandt, Mirela Ben-Chen Technion, and Daniele Panozzo. 2017. Directional Field Synthesis, Design, and Processing. In ACM SIGGRAPH 2017 Courses. ACM, Article 12, 30 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  48. Lining Yao, Ryuma Niiyama, Jifei Ou, Sean Weston Follmer, Clark Della Silva, and Hiroshi Ishii. 2013. PneUI: Pneumatically Actuated Soft Composite Materials for Shape Changing Interfaces. UIST 2013 - Proceedings of the 26th Annual ACM Symposium on User Interface Software and Technology, 13--22. Google ScholarGoogle ScholarDigital LibraryDigital Library
  49. Yihui Zhang, Fan Zhang, Zheng Yan, Qiang Ma, Xiuling Li, Yonggang Huang, and John A. Rogers. 2017. Printing, folding and assembly methods for forming 3D mesostructures in advanced materials. Nature Reviews Materials 2 (29 03 2017), 17019 EP -. Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. Computational inverse design of surface-based inflatables

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in

      Full Access

      • Published in

        cover image ACM Transactions on Graphics
        ACM Transactions on Graphics  Volume 40, Issue 4
        August 2021
        2170 pages
        ISSN:0730-0301
        EISSN:1557-7368
        DOI:10.1145/3450626
        Issue’s Table of Contents

        Copyright © 2021 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 19 July 2021
        Published in tog Volume 40, Issue 4

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader