skip to main content
research-article

A generic framework for physical light transport

Published:19 July 2021Publication History
Skip Abstract Section

Abstract

Physically accurate rendering often calls for taking the wave nature of light into consideration. In computer graphics, this is done almost exclusively locally, i.e. on a micrometre scale where the diffractive phenomena arise. However, the statistical properties of light, that dictate its coherence characteristics and its capacity to give rise to wave interference effects, evolve globally: these properties change on, e.g., interaction with a surface, diffusion by participating media and simply by propagation. In this paper, we derive the first global light transport framework that is able to account for these properties of light and, therefore, is fully consistent with Maxwell's electromagnetic theory. We show that our framework is a generalization of the classical, radiometry-based light transport---prominent in computer graphics---and retains some of its attractive properties. Finally, as a proof of concept, we apply the presented framework to a few practical problems in rendering and validate against well-studied methods in optics.

Skip Supplemental Material Section

Supplemental Material

3450626.3459791.mov

References

  1. Thomas Auzinger, Wolfgang Heidrich, and Bernd Bickel. 2018. Computational design of nanostructural color for additive manufacturing. ACM Transactions on Graphics 37, 4 (Aug 2018), 1--16. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Chen Bar, Marina Alterman, Ioannis Gkioulekas, and Anat Levin. 2019. A Monte Carlo framework for rendering speckle statistics in scattering media. ACM Transactions on Graphics 38, 4 (Jul 2019), 1--22. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Chen Bar, Ioannis Gkioulekas, and Anat Levin. 2020. Rendering near-field speckle statistics in scattering media. ACM Transactions on Graphics 39, 6 (Nov 2020), 1--18. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Laurent Belcour and Pascal Barla. 2017. A Practical Extension to Microfacet Theory for the Modeling of Varying Iridescence. ACM Trans. Graph. 36, 4, Article 65 (July 2017), 14 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Max Born and Emil Wolf. 1999. Principles of optics : electromagnetic theory of propagation, interference and diffraction of light. Cambridge University Press, Cambridge New York.Google ScholarGoogle Scholar
  6. Rémi Carminati and Jean-Jacques Greffet. 1999. Near-Field Effects in Spatial Coherence of Thermal Sources. Phys. Rev. Lett. 82 (Feb 1999), 1660--1663. Issue 8. Google ScholarGoogle ScholarCross RefCross Ref
  7. S Chandrasekhar. 1960. Radiative transfer. Dover Publications, New York.Google ScholarGoogle Scholar
  8. Mikhail Charnotskii. 2019. Coherence of radiation from incoherent sources: I Sources on a sphere and far-field conditions. Journal of the Optical Society of America A 36, 8 (Jul 2019), 1433. Google ScholarGoogle ScholarCross RefCross Ref
  9. E. L. Church, H. A. Jenkinson, and J. M. Zavada. 1977. Measurement of the Finish of Diamond-Turned Metal Surfaces By Differential Light Scattering. Optical Engineering 16, 4 (Aug 1977). Google ScholarGoogle ScholarCross RefCross Ref
  10. Tom Cuypers, Tom Haber, Philippe Bekaert, Se Baek Oh, and Ramesh Raskar. 2012. Reflectance model for diffraction. ACM Transactions on Graphics 31, 5 (Aug 2012), 1--11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. D. S. Dhillon, J. Teyssier, M. Single, I. Gaponenko, M. C. Milinkovitch, and M. Zwicker. 2014. Interactive Diffraction from Biological Nanostructures. Computer Graphics Forum 33, 8 (2014), 177--188. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. V. Falster, A. Jarabo, and J. R. Frisvad. 2020. Computing the Bidirectional Scattering of a Microstructure Using Scalar Diffraction Theory and Path Tracing. Computer Graphics Forum 39, 7 (Oct 2020), 231--242. Google ScholarGoogle ScholarCross RefCross Ref
  13. Ari T. Friberg. 1979. On the existence of a radiance function for finite planar sources of arbitrary states of coherence. Journal of the Optical Society of America 69, 1 (Jan 1979), 192. Google ScholarGoogle ScholarCross RefCross Ref
  14. Ioannis Gkioulekas, Anat Levin, Frédo Durand, and Todd Zickler. 2015. Micron-scale light transport decomposition using interferometry. ACM Transactions on Graphics 34, 4 (Jul 2015), 1--14. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Joseph Goodman. 2015. Statistical optics. John Wiley & Sons Inc, Hoboken, New Jersey.Google ScholarGoogle Scholar
  16. Ibón Guillén, Julio Marco, Diego Gutierrez, Wenzel Jakob, and Adrian Jarabo. 2020. A General Framework for Pearlescent Materials. ACM Transactions on Graphics 39, 6Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. (2020). Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. M.V. Guryev. 2012. Detailed description of spontaneous emission. Journal of Modern Optics 59, 14 (Aug 2012), 1278--1282. Google ScholarGoogle ScholarCross RefCross Ref
  19. Stephane Guy and Cyril Soler. 2004. Graphics gems revisited. In ACM SIGGRAPH 2004 Papers on - SIGGRAPH '04. ACM Press. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Nicolas Holzschuch and Romain Pacanowski. 2017. A Two-scale Microfacet Reflectance Model Combining Reflection and Diffraction. ACM Trans. Graph. 36, 4, Article 66 (July 2017), 12 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Adrian Jarabo, Julio Marco, Adolfo Muñoz, Raul Buisan, Wojciech Jarosz, and Diego Gutierrez. 2014. A framework for transient rendering. ACM Transactions on Graphics 33, 6 (Nov 2014), 1--10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. James T. Kajiya. 1986. The rendering equation. In Proceedings of the 13th annual conference on Computer graphics and interactive techniques - SIGGRAPH '86. ACM Press. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Tom Kneiphof, Tim Golla, and Reinhard Klein. 2019. Real-time Image-based Lighting of Microfacet BRDFs with Varying Iridescence. Computer Graphics Forum 38, 4 (2019), 77--85. Google ScholarGoogle ScholarCross RefCross Ref
  24. Matias Koivurova, Henri Partanen, Jari Turunen, and Ari T. Friberg. 2017. Grating interferometer for light-efficient spatial coherence measurement of arbitrary sources. Applied Optics 56, 18 (Jun 2017), 5216. Google ScholarGoogle ScholarCross RefCross Ref
  25. Alankar Kotwal, Anat Levin, and Ioannis Gkioulekas. 2020. Interferometric transmission probing with coded mutual intensity. ACM Transactions on Graphics 39, 4 (Jul 2020). Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Andrey Krywonos. 2006. Predicting surface scatter using a linear systems formulation of non-paraxial scalar diffraction. Ph.D. Dissertation. University of Central Florida.Google ScholarGoogle Scholar
  27. Anat Levin, Daniel Glasner, Ying Xiong, Frédo Durand, William Freeman, Wojciech Matusik, and Todd Zickler. 2013. Fabricating BRDFs at high spatial resolution using wave optics. ACM Transactions on Graphics 32, 4 (Jul 2013), 1--14. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Eugene Lommel. 1889. Die Photometrie der diffusen Zurückwerfung. Annalen der Physik 272, 2 (1889), 473--502.Google ScholarGoogle ScholarCross RefCross Ref
  29. Heylal Mashaal, Alex Goldstein, Daniel Feuermann, and Jeffrey M. Gordon. 2012. First direct measurement of the spatial coherence of sunlight. Optics Letters 37, 17 (Aug 2012), 3516. Google ScholarGoogle ScholarCross RefCross Ref
  30. Anthony B Murphy and Eugene Tam. 2014. Thermodynamic properties and transport coefficients of arc lamp plasmas: argon, krypton and xenon. Journal of Physics D: Applied Physics 47, 29 (Jun 2014), 295202. Google ScholarGoogle ScholarCross RefCross Ref
  31. A. Musbach, G. W. Meyer, F. Reitich, and S. H. Oh. 2013. Full Wave Modelling of Light Propagation and Reflection. Computer Graphics Forum 32, 6 (Feb 2013), 24--37. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Se Baek Oh, Sriram Kashyap, Rohit Garg, Sharat Chandran, and Ramesh Raskar. 2010. Rendering Wave Effects with Augmented Light Field. Computer Graphics Forum 29, 2 (May 2010), 507--516. Google ScholarGoogle ScholarCross RefCross Ref
  33. George Ruck. 1970. Radar cross section handbook. Plenum Press, New York.Google ScholarGoogle Scholar
  34. Iman Sadeghi, Adolfo Munoz, Philip Laven, Wojciech Jarosz, Francisco Seron, Diego Gutierrez, and Henrik Wann Jensen. 2012. Physically-based simulation of rainbows. ACM Transactions on Graphics 31, 1 (Jan 2012), 1--12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Jos Stam. 1999. Diffraction shaders. In Proceedings of the 26th annual conference on Computer graphics and interactive techniques - SIGGRAPH '99. ACM Press. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Shlomi Steinberg. 2019. Analytic Spectral Integration of Birefringence-Induced Iridescence. Computer Graphics Forum 38, 4 (Jul 2019), 97--110. Google ScholarGoogle ScholarCross RefCross Ref
  37. Shlomi Steinberg. 2020. Accurate Rendering of Liquid-Crystals and Inhomogeneous Optically Anisotropic Media. ACM Transactions on Graphics 39, 3 (Jun 2020), 1--23. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Shlomi Steinberg and Lingqi Yan. 2021. Rendering of Subjective Speckle Formed by Rough Statistical Surfaces. ACM Transactions on Graphics (2021), To appear.Google ScholarGoogle Scholar
  39. John Stover. 2012. Optical scattering : measurement and analysis. SPIE Press, Bellingham, Wash. (1000 20th St. Bellingham WA 98225-6705 USA.Google ScholarGoogle Scholar
  40. Petr Sysel and Pavel Rajmic. 2012. Goertzel algorithm generalized to non-integer multiples of fundamental frequency. EURASIP Journal on Advances in Signal Processing 2012, 1 (Mar 2012). Google ScholarGoogle ScholarCross RefCross Ref
  41. Antoine Toisoul, Daljit Singh Dhillon, and Abhijeet Ghosh. 2018. Acquiring Spatially Varying Appearance of Printed Holographic Surfaces. ACM Trans. Graph. 37, 6, Article 272 (Dec. 2018), 16 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. Antoine Toisoul and Abhijeet Ghosh. 2017. Practical Acquisition and Rendering of Diffraction Effects in Surface Reflectance. ACM Transactions on Graphics 36, 5 (Jul 2017), 1--16. Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. Z. Velinov, S. Werner, and M. B. Hullin. 2018. Real-Time Rendering of Wave-Optical Effects on Scratched Surfaces. Computer Graphics Forum 37, 2 (2018), 123--134. Google ScholarGoogle ScholarCross RefCross Ref
  44. A Walther. 1968. Radiometry and coherence. JOSA 58, 9 (1968), 1256--1259. Google ScholarGoogle ScholarCross RefCross Ref
  45. Sebastian Werner, Zdravko Velinov, Wenzel Jakob, and Matthias Hullin. 2017. Scratch Iridescence: Wave-Optical Rendering of Diffractive Surface Structure. Transactions on Graphics (Proceedings of SIGGRAPH Asia) 36, 6 (Nov. 2017). Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. Alexander Wilkie, Robert F. Tobler, and Werner Purgathofer. 2001. Combined Rendering of Polarization and Fluorescence Effects. Springer Vienna, 197--204. Google ScholarGoogle ScholarCross RefCross Ref
  47. Emil Wolf. 1978. Coherence and radiometry. JOSA 68, 1 (1978), 6--17. Google ScholarGoogle ScholarCross RefCross Ref
  48. Emil Wolf. 1982. New theory of partial coherence in the space-frequency domain. Part I: spectra and cross spectra of steady-state sources. J. Opt. Soc. Am. 72, 3 (Mar 1982), 343--351. Google ScholarGoogle ScholarCross RefCross Ref
  49. Emil Wolf. 2007. Introduction to the theory of coherence and polarization of light. Cambridge University Press, Cambridge.Google ScholarGoogle Scholar
  50. Ling-Qi Yan, Miloš Hašan, Bruce Walter, Steve Marschner, and Ravi Ramamoorthi. 2018. Rendering Specular Microgeometry with Wave Optics. ACM Trans. Graph. 37, 4, Article 75 (July 2018), 10 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  51. Andrew Zangwill. 2013. Modern electrodynamics. Cambridge University Press, Cambridge.Google ScholarGoogle Scholar

Index Terms

  1. A generic framework for physical light transport

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in

      Full Access

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader