Abstract
High-quality denoising of Monte Carlo low-sample renderings remains a critical challenge for practical interactive ray tracing. We present a new learning-based denoiser that achieves state-of-the-art quality and runs at interactive rates. Our model processes individual path-traced samples with a lightweight neural network to extract per-pixel feature vectors. The rest of our pipeline operates in pixel space. We define a novel pairwise affinity over the features in a pixel neighborhood, from which we assemble dilated spatial kernels to filter the noisy radiance. Our denoiser is temporally stable thanks to two mechanisms. First, we keep a running average of the noisy radiance and intermediate features, using a per-pixel recursive filter with learned weights. Second, we use a small temporal kernel based on the pairwise affinity between features of consecutive frames. Our experiments show our new affinities lead to higher quality outputs than techniques with comparable computational costs, and better high-frequency details than kernel-predicting approaches. Our model matches or outperfoms state-of-the-art offline denoisers in the low-sample count regime (2--8 samples per pixel), and runs at interactive frame rates at 1080p resolution.
Supplemental Material
- Steve Bako, Thijs Vogels, Brian McWilliams, Mark Meyer, Jan Novák, Alex Harvill, Pradeep Sen, Tony Derose, and Fabrice Rousselle. 2017. Kernel-predicting convolutional networks for denoising Monte Carlo renderings. ACM Trans. Graph. 36, 4 (2017), 97--1.Google Scholar
Digital Library
- Pablo Bauszat, Martin Eisemann, S John, and M Magnor. 2015. Sample-based manifold filtering for interactive global illumination and depth of field. Computer Graphics Forum (2015).Google Scholar
- Pablo Bauszat, Martin Eisemann, and Marcus Magnor. 2011. Guided Image Filtering for Interactive High-quality Global Illumination. Computer Graphics Forum (Proc. EGSR) (2011).Google Scholar
- Laurent Belcour, Cyril Soler, Kartic Subr, Nicolas Holzschuch, and Fredo Durand. 2013. 5D covariance tracing for efficient defocus and motion blur. ACM TOG (2013).Google Scholar
- Benedikt Bitterli. 2016. Rendering resources. https://benedikt-bitterli.me/resources.Google Scholar
- Benedikt Bitterli, Fabrice Rousselle, Bochang Moon, José A. Iglesias-Guitiàn, David Adler, Kenny Mitchell, Wojciech Jarosz, and Jan Novák. 2016. Nonlinearly Weighted First-order Regression for Denoising Monte Carlo Renderings. Computer Graphics Forum (Proc. EGSR) (2016).Google Scholar
- Chakravarty R Alla Chaitanya, Anton S Kaplanyan, Christoph Schied, Marco Salvi, Aaron Lefohn, Derek Nowrouzezahrai, and Timo Aila. 2017. Interactive reconstruction of Monte Carlo image sequences using a recurrent denoising autoencoder. ACM Transactions on Graphics (TOG) 36, 4 (2017), 1--12.Google Scholar
Digital Library
- Angel X. Chang, Thomas Funkhouser, Leonidas Guibas, Pat Hanrahan, Qixing Huang, Zimo Li, Silvio Savarese, Manolis Savva, Shuran Song, Hao Su, Jianxiong Xiao, Li Yi, and Fisher Yu. 2015. ShapeNet: An Information-Rich 3D Model Repository. Technical Report arXiv:1512.03012 [cs.GR]. Stanford University --- Princeton University --- Toyota Technological Institute at Chicago.Google Scholar
- M. Cimpoi, S. Maji, I. Kokkinos, S. Mohamed, and A. Vedaldi. 2014. Describing Textures in the Wild. In Proceedings of the IEEE Conf. on Computer Vision and Pattern Recognition (CVPR).Google Scholar
- Holger Dammertz, Daniel Sewtz, Johannes Hanika, and Hendrik PA Lensch. 2010. Edge-avoiding À-Trous wavelet transform for fast global illumination filtering. In Proceedings of the Conference on High Performance Graphics. Citeseer, 67--75.Google Scholar
- Mauricio Delbracio, Pablo Musé, Antoni Buades, Julien Chauvier, Nicholas Phelps, and Jean-Michel Morel. 2014. Boosting monte carlo rendering by ray histogram fusion. ACM Transactions on Graphics (TOG) 33, 1 (2014), 1--15.Google Scholar
Digital Library
- Frédo Durand, Nicolas Holzschuch, Cyril Soler, Eric Chan, and François X Sillion. 2005. A frequency analysis of light transport. ACM SIGGRAPH (2005).Google Scholar
- Kevin Egan, Florian Hecht, Frédo Durand, and Ravi Ramamoorthi. 2011. Frequency analysis and sheared filtering for shadow light fields of complex occluders. ACM TOG (2011).Google Scholar
- Kevin Egan, Yu-Ting Tseng, Nicolas Holzschuch, Frédo Durand, and Ravi Ramamoorthi. 2009. Frequency analysis and sheared reconstruction for rendering motion blur. ACM SIGGRAPH (2009).Google Scholar
- Michaël Gharbi, Jiawen Chen, Jonathan T Barron, Samuel W Hasinoff, and Frédo Durand. 2017. Deep bilateral learning for real-time image enhancement. ACM Transactions on Graphics (TOG) 36, 4 (2017), 1--12.Google Scholar
Digital Library
- Michaël Gharbi, Tzu-Mao Li, Miika Aittala, Jaakko Lehtinen, and Frédo Durand. 2019. Sample-based Monte Carlo denoising using a kernel-splatting network. ACM Transactions on Graphics (TOG) 38, 4 (2019), 1--12.Google Scholar
Digital Library
- Toshiya Hachisuka, Wojciech Jarosz, Richard Peter Weistroffer, Kevin Dale, Greg Humphreys, Matthias Zwicker, and Henrik Wann Jensen. 2008. Multidimensional adaptive sampling and reconstruction for ray tracing. ACM SIGGRAPH (2008).Google Scholar
- J. Hasselgren, J. Munkberg, M. Salvi, A. Patney, and A. Lefohn. 2020. Neural Temporal Adaptive Sampling and Denoising. Computer Graphics Forum 39 (2020).Google Scholar
- Kaiming He, Jian Sun, and Xiaoou Tang. 2010. Guided image filtering. ECCV (2010).Google Scholar
- Matthias Holschneider, Richard Kronland-Martinet, Jean Morlet, and Ph Tchamitchian. 1990. A real-time algorithm for signal analysis with the help of the wavelet transform. In Wavelets. Springer, 286--297.Google Scholar
- James T. Kajiya. 1986. The Rendering Equation. ACM SIGGRAPH (1986).Google Scholar
- Nima Khademi Kalantari, Steve Bako, and Pradeep Sen. 2015. A machine learning approach for filtering Monte Carlo noise. ACM Trans. Graph. 34, 4 (2015), 122--1.Google Scholar
Digital Library
- Nima Khademi Kalantari and Pradeep Sen. 2013. Removing the noise in Monte Carlo rendering with general image denoising algorithms. Computer Graphics Forum (Proc. EG) (2013).Google Scholar
- Markus Kettunen, Erik Härkönen, and Jaakko Lehtinen. 2019. Deep convolutional reconstruction for gradient-domain rendering. ACM Transactions on Graphics (TOG) 38, 4 (2019), 1--12.Google Scholar
Digital Library
- Khronos. 2020. Vulkan 1.2.167 Specification. https://www.khronos.org/registry/vulkan/specs/1.2-extensions/html/vkspec.htmlGoogle Scholar
- Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014).Google Scholar
- Matias Koskela, Kalle Immonen, Markku Mäkitalo, Alessandro Foi, Timo Viitanen,Google Scholar
- Pekka Jääskeläinen, Heikki Kultala, and Jarmo Takala. 2019. Blockwise multi-order feature regression for real-time path-tracing reconstruction. ACM Transactions on Graphics (TOG) 38, 5 (2019), 1--14.Google Scholar
- Alexandr Kuznetsov, Nima Khademi Kalantari, and Ravi Ramamoorthi. 2018. Deep Adaptive Sampling for Low Sample Count Rendering. In Computer Graphics Forum, Vol. 37. Wiley Online Library, 35--44.Google Scholar
- Eric P Lafortune and Yves D Willems. 1993. Bi-directional path tracing. (1993).Google Scholar
- Jaakko Lehtinen, Timo Aila, Jiawen Chen, Samuli Laine, and Frédo Durand. 2011. Temporal light field reconstruction for rendering distribution effects. ACM SIGGRAPH (2011).Google Scholar
- Jaakko Lehtinen, Timo Aila, Samuli Laine, and Frédo Durand. 2012. Reconstructing the indirect light field for global illumination. ACM SIGGRAPH (2012).Google Scholar
- Tzu-Mao Li, Yu-Ting Wu, and Yung-Yu Chuang. 2012. SURE-based optimization for adaptive sampling and reconstruction. ACM SIGGRAPH Asia (2012).Google Scholar
- Michael Mara, Morgan McGuire, Benedikt Bitterli, and Wojciech Jarosz. 2017. An efficient denoising algorithm for global illumination. High Performance Graphics 10 (2017), 3105762--3105774.Google Scholar
- Xiaoxu Meng, Quan Zheng, Amitabh Varshney, Gurprit Singh, and Matthias Zwicker. 2020. Real-time Monte Carlo Denoising with the Neural Bilateral Grid. In Eurographics Symposium on Rendering - DL-only Track, Carsten Dachsbacher and Matt Pharr (Eds.). The Eurographics Association. Google Scholar
Cross Ref
- Microsoft. 2021. DirectX Raytracing (DXR) Functional Spec. https://microsoft.github.io/DirectX-Specs/d3d/Raytracing.htmlGoogle Scholar
- Bochang Moon, Nathan Carr, and Sung-Eui Yoon. 2014. Adaptive rendering based on weighted local regression. ACM TOG (2014).Google Scholar
- Bochang Moon, Steven McDonagh, Kenny Mitchell, and Markus Gross. 2016. Adaptive polynomial rendering. ACM Transactions on Graphics (TOG) 35, 4 (2016), 1--10.Google Scholar
Digital Library
- Thomas Müller, Brian McWilliams, Fabrice Rousselle, Markus Gross, and Jan Novák. 2019. Neural importance sampling. ACM Transactions on Graphics (TOG) 38, 5 (2019), 1--19.Google Scholar
Digital Library
- Jacob Munkberg and Jon Hasselgren. 2020. Neural Denoising with Layer Embeddings. In Computer Graphics Forum, Vol. 39. Wiley Online Library, 1--12.Google Scholar
- Ryan S Overbeck, Craig Donner, and Ravi Ramamoorthi. 2009. Adaptive wavelet rendering. ACM SIGGRAPH Asia (2009).Google Scholar
- Steven G. Parker, Heiko Friedrich, David Luebke, Keith Morley, James Bigler, Jared Hoberock, David McAllister, Austin Robison, Andreas Dietrich, Greg Humphreys, Morgan McGuire, and Martin Stich. 2013. GPU Ray Tracing. Commun. ACM 56, 5 (May 2013), 93--101. Google Scholar
Digital Library
- Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. 2019. PyTorch: An Imperative Style, High-Performance Deep Learning Library. In Advances in Neural Information Processing Systems 32, H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett (Eds.). Curran Associates, Inc., 8024--8035. http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdfGoogle Scholar
Digital Library
- Matt Pharr, Wenzel Jakob, and Greg Humphreys. 2016. Physically based rendering: From theory to implementation. Morgan Kaufmann.Google Scholar
- Erik Reinhard, Michael Stark, Peter Shirley, and James Ferwerda. 2002. Photographic tone reproduction for digital images. In Proceedings of the 29th annual conference on Computer graphics and interactive techniques. 267--276.Google Scholar
Digital Library
- Olaf Ronneberger, Philipp Fischer, and Thomas Brox. 2015. U-net: Convolutional networks for biomedical image segmentation. In International Conference on Medical image computing and computer-assisted intervention. Springer, 234--241.Google Scholar
Cross Ref
- Fabrice Rousselle, Claude Knaus, and Matthias Zwicker. 2011. Adaptive Sampling and Reconstruction Using Greedy Error Minimization. ACM Trans. Graph. 30, 6 (Dec. 2011), 1--12. Google Scholar
Digital Library
- Fabrice Rousselle, Claude Knaus, and Matthias Zwicker. 2012. Adaptive rendering with non-local means filtering. ACM SIGGRAPH Asia (2012).Google Scholar
- Fabrice Rousselle, Marco Manzi, and Matthias Zwicker. 2013. Robust denoising using feature and color information. In Computer Graphics Forum, Vol. 32. Wiley Online Library, 121--130.Google Scholar
- Christoph Schied, Anton Kaplanyan, Chris Wyman, Anjul Patney, Chakravarty R. Alla Chaitanya, John Burgess, Shiqiu Liu, Carsten Dachsbacher, Aaron Lefohn, and Marco Salvi. 2017. Spatiotemporal Variance-guided Filtering: Real-time Reconstruction for Path-traced Global Illumination. High Performance Graphics (2017).Google Scholar
Digital Library
- Christoph Schied, Christoph Peters, and Carsten Dachsbacher. 2018. Gradient estimation for real-time adaptive temporal filtering. Proceedings of the ACM on Computer Graphics and Interactive Techniques 1, 2 (2018), 1--16.Google Scholar
Digital Library
- Pradeep Sen and Soheil Darabi. 2012. On filtering the noise from the random parameters in Monte Carlo rendering. ACM TOG (2012).Google Scholar
- Carlo Tomasi and Roberto Manduchi. 1998. Bilateral filtering for gray and color images. In Sixth international conference on computer vision (IEEE Cat. No. 98CH36271). IEEE, 839--846.Google Scholar
Cross Ref
- Eric Veach and Leonidas Guibas. 1995. Bidirectional estimators for light transport. In Photorealistic Rendering Techniques. Springer, 145--167.Google Scholar
- Thijs Vogels, Fabrice Rousselle, Brian McWilliams, Gerhard Röthlin, Alex Harvill, David Adler, Mark Meyer, and Jan Novák. 2018. Denoising with kernel prediction and asymmetric loss functions. ACM Transactions on Graphics (TOG) 37, 4 (2018), 1--15.Google Scholar
Digital Library
- Yue Wu, Brian Tracey, Premkumar Natarajan, and Joseph P Noonan. 2013. James-Stein type center pixel weights for non-local means image denoising. IEEE Signal Processing Letters 20, 4 (2013), 411--414.Google Scholar
Cross Ref
- Bing Xu, Junfei Zhang, Rui Wang, Kun Xu, Yong-Liang Yang, Chuan Li, and Rui Tang. 2019. Adversarial Monte Carlo denoising with conditioned auxiliary feature modulation. ACM Trans. Graph. 38, 6 (2019), 224--1.Google Scholar
Digital Library
- Fisher Yu and Vladlen Koltun. 2016. Multi-Scale Context Aggregation by Dilated Convolutions. In ICLR.Google Scholar
- M. Zwicker, W. Jarosz, J. Lehtinen, B. Moon, R. Ramamoorthi, F. Rousselle, P. Sen, C. Soler, and S.-E. Yoon. 2015. Recent Advances in Adaptive Sampling and Reconstruction for Monte Carlo Rendering. Computer Graphics Forum (Proc. EG) (2015).Google Scholar
Digital Library
Index Terms
Interactive Monte Carlo denoising using affinity of neural features
Recommendations
Sample-based Monte Carlo denoising using a kernel-splatting network
Denoising has proven to be useful to efficiently generate high-quality Monte Carlo renderings. Traditional pixel-based denoisers exploit summary statistics of a pixel's sample distributions, which discards much of the samples' information and limits ...
Kernel-predicting convolutional networks for denoising Monte Carlo renderings
Regression-based algorithms have shown to be good at denoising Monte Carlo (MC) renderings by leveraging its inexpensive by-products (e.g., feature buffers). However, when using higher-order models to handle complex cases, these techniques often overfit ...
Adversarial Monte Carlo denoising with conditioned auxiliary feature modulation
Denoising Monte Carlo rendering with a very low sample rate remains a major challenge in the photo-realistic rendering research. Many previous works, including regression-based and learning-based methods, have been explored to achieve better rendering ...





Comments