skip to main content
research-article

Interactive Monte Carlo denoising using affinity of neural features

Published:19 July 2021Publication History
Skip Abstract Section

Abstract

High-quality denoising of Monte Carlo low-sample renderings remains a critical challenge for practical interactive ray tracing. We present a new learning-based denoiser that achieves state-of-the-art quality and runs at interactive rates. Our model processes individual path-traced samples with a lightweight neural network to extract per-pixel feature vectors. The rest of our pipeline operates in pixel space. We define a novel pairwise affinity over the features in a pixel neighborhood, from which we assemble dilated spatial kernels to filter the noisy radiance. Our denoiser is temporally stable thanks to two mechanisms. First, we keep a running average of the noisy radiance and intermediate features, using a per-pixel recursive filter with learned weights. Second, we use a small temporal kernel based on the pairwise affinity between features of consecutive frames. Our experiments show our new affinities lead to higher quality outputs than techniques with comparable computational costs, and better high-frequency details than kernel-predicting approaches. Our model matches or outperfoms state-of-the-art offline denoisers in the low-sample count regime (2--8 samples per pixel), and runs at interactive frame rates at 1080p resolution.

Skip Supplemental Material Section

Supplemental Material

3450626.3459793.mp4
a37-isik.mp4

References

  1. Steve Bako, Thijs Vogels, Brian McWilliams, Mark Meyer, Jan Novák, Alex Harvill, Pradeep Sen, Tony Derose, and Fabrice Rousselle. 2017. Kernel-predicting convolutional networks for denoising Monte Carlo renderings. ACM Trans. Graph. 36, 4 (2017), 97--1.Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Pablo Bauszat, Martin Eisemann, S John, and M Magnor. 2015. Sample-based manifold filtering for interactive global illumination and depth of field. Computer Graphics Forum (2015).Google ScholarGoogle Scholar
  3. Pablo Bauszat, Martin Eisemann, and Marcus Magnor. 2011. Guided Image Filtering for Interactive High-quality Global Illumination. Computer Graphics Forum (Proc. EGSR) (2011).Google ScholarGoogle Scholar
  4. Laurent Belcour, Cyril Soler, Kartic Subr, Nicolas Holzschuch, and Fredo Durand. 2013. 5D covariance tracing for efficient defocus and motion blur. ACM TOG (2013).Google ScholarGoogle Scholar
  5. Benedikt Bitterli. 2016. Rendering resources. https://benedikt-bitterli.me/resources.Google ScholarGoogle Scholar
  6. Benedikt Bitterli, Fabrice Rousselle, Bochang Moon, José A. Iglesias-Guitiàn, David Adler, Kenny Mitchell, Wojciech Jarosz, and Jan Novák. 2016. Nonlinearly Weighted First-order Regression for Denoising Monte Carlo Renderings. Computer Graphics Forum (Proc. EGSR) (2016).Google ScholarGoogle Scholar
  7. Chakravarty R Alla Chaitanya, Anton S Kaplanyan, Christoph Schied, Marco Salvi, Aaron Lefohn, Derek Nowrouzezahrai, and Timo Aila. 2017. Interactive reconstruction of Monte Carlo image sequences using a recurrent denoising autoencoder. ACM Transactions on Graphics (TOG) 36, 4 (2017), 1--12.Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Angel X. Chang, Thomas Funkhouser, Leonidas Guibas, Pat Hanrahan, Qixing Huang, Zimo Li, Silvio Savarese, Manolis Savva, Shuran Song, Hao Su, Jianxiong Xiao, Li Yi, and Fisher Yu. 2015. ShapeNet: An Information-Rich 3D Model Repository. Technical Report arXiv:1512.03012 [cs.GR]. Stanford University --- Princeton University --- Toyota Technological Institute at Chicago.Google ScholarGoogle Scholar
  9. M. Cimpoi, S. Maji, I. Kokkinos, S. Mohamed, and A. Vedaldi. 2014. Describing Textures in the Wild. In Proceedings of the IEEE Conf. on Computer Vision and Pattern Recognition (CVPR).Google ScholarGoogle Scholar
  10. Holger Dammertz, Daniel Sewtz, Johannes Hanika, and Hendrik PA Lensch. 2010. Edge-avoiding À-Trous wavelet transform for fast global illumination filtering. In Proceedings of the Conference on High Performance Graphics. Citeseer, 67--75.Google ScholarGoogle Scholar
  11. Mauricio Delbracio, Pablo Musé, Antoni Buades, Julien Chauvier, Nicholas Phelps, and Jean-Michel Morel. 2014. Boosting monte carlo rendering by ray histogram fusion. ACM Transactions on Graphics (TOG) 33, 1 (2014), 1--15.Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Frédo Durand, Nicolas Holzschuch, Cyril Soler, Eric Chan, and François X Sillion. 2005. A frequency analysis of light transport. ACM SIGGRAPH (2005).Google ScholarGoogle Scholar
  13. Kevin Egan, Florian Hecht, Frédo Durand, and Ravi Ramamoorthi. 2011. Frequency analysis and sheared filtering for shadow light fields of complex occluders. ACM TOG (2011).Google ScholarGoogle Scholar
  14. Kevin Egan, Yu-Ting Tseng, Nicolas Holzschuch, Frédo Durand, and Ravi Ramamoorthi. 2009. Frequency analysis and sheared reconstruction for rendering motion blur. ACM SIGGRAPH (2009).Google ScholarGoogle Scholar
  15. Michaël Gharbi, Jiawen Chen, Jonathan T Barron, Samuel W Hasinoff, and Frédo Durand. 2017. Deep bilateral learning for real-time image enhancement. ACM Transactions on Graphics (TOG) 36, 4 (2017), 1--12.Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Michaël Gharbi, Tzu-Mao Li, Miika Aittala, Jaakko Lehtinen, and Frédo Durand. 2019. Sample-based Monte Carlo denoising using a kernel-splatting network. ACM Transactions on Graphics (TOG) 38, 4 (2019), 1--12.Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Toshiya Hachisuka, Wojciech Jarosz, Richard Peter Weistroffer, Kevin Dale, Greg Humphreys, Matthias Zwicker, and Henrik Wann Jensen. 2008. Multidimensional adaptive sampling and reconstruction for ray tracing. ACM SIGGRAPH (2008).Google ScholarGoogle Scholar
  18. J. Hasselgren, J. Munkberg, M. Salvi, A. Patney, and A. Lefohn. 2020. Neural Temporal Adaptive Sampling and Denoising. Computer Graphics Forum 39 (2020).Google ScholarGoogle Scholar
  19. Kaiming He, Jian Sun, and Xiaoou Tang. 2010. Guided image filtering. ECCV (2010).Google ScholarGoogle Scholar
  20. Matthias Holschneider, Richard Kronland-Martinet, Jean Morlet, and Ph Tchamitchian. 1990. A real-time algorithm for signal analysis with the help of the wavelet transform. In Wavelets. Springer, 286--297.Google ScholarGoogle Scholar
  21. James T. Kajiya. 1986. The Rendering Equation. ACM SIGGRAPH (1986).Google ScholarGoogle Scholar
  22. Nima Khademi Kalantari, Steve Bako, and Pradeep Sen. 2015. A machine learning approach for filtering Monte Carlo noise. ACM Trans. Graph. 34, 4 (2015), 122--1.Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Nima Khademi Kalantari and Pradeep Sen. 2013. Removing the noise in Monte Carlo rendering with general image denoising algorithms. Computer Graphics Forum (Proc. EG) (2013).Google ScholarGoogle Scholar
  24. Markus Kettunen, Erik Härkönen, and Jaakko Lehtinen. 2019. Deep convolutional reconstruction for gradient-domain rendering. ACM Transactions on Graphics (TOG) 38, 4 (2019), 1--12.Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Khronos. 2020. Vulkan 1.2.167 Specification. https://www.khronos.org/registry/vulkan/specs/1.2-extensions/html/vkspec.htmlGoogle ScholarGoogle Scholar
  26. Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014).Google ScholarGoogle Scholar
  27. Matias Koskela, Kalle Immonen, Markku Mäkitalo, Alessandro Foi, Timo Viitanen,Google ScholarGoogle Scholar
  28. Pekka Jääskeläinen, Heikki Kultala, and Jarmo Takala. 2019. Blockwise multi-order feature regression for real-time path-tracing reconstruction. ACM Transactions on Graphics (TOG) 38, 5 (2019), 1--14.Google ScholarGoogle Scholar
  29. Alexandr Kuznetsov, Nima Khademi Kalantari, and Ravi Ramamoorthi. 2018. Deep Adaptive Sampling for Low Sample Count Rendering. In Computer Graphics Forum, Vol. 37. Wiley Online Library, 35--44.Google ScholarGoogle Scholar
  30. Eric P Lafortune and Yves D Willems. 1993. Bi-directional path tracing. (1993).Google ScholarGoogle Scholar
  31. Jaakko Lehtinen, Timo Aila, Jiawen Chen, Samuli Laine, and Frédo Durand. 2011. Temporal light field reconstruction for rendering distribution effects. ACM SIGGRAPH (2011).Google ScholarGoogle Scholar
  32. Jaakko Lehtinen, Timo Aila, Samuli Laine, and Frédo Durand. 2012. Reconstructing the indirect light field for global illumination. ACM SIGGRAPH (2012).Google ScholarGoogle Scholar
  33. Tzu-Mao Li, Yu-Ting Wu, and Yung-Yu Chuang. 2012. SURE-based optimization for adaptive sampling and reconstruction. ACM SIGGRAPH Asia (2012).Google ScholarGoogle Scholar
  34. Michael Mara, Morgan McGuire, Benedikt Bitterli, and Wojciech Jarosz. 2017. An efficient denoising algorithm for global illumination. High Performance Graphics 10 (2017), 3105762--3105774.Google ScholarGoogle Scholar
  35. Xiaoxu Meng, Quan Zheng, Amitabh Varshney, Gurprit Singh, and Matthias Zwicker. 2020. Real-time Monte Carlo Denoising with the Neural Bilateral Grid. In Eurographics Symposium on Rendering - DL-only Track, Carsten Dachsbacher and Matt Pharr (Eds.). The Eurographics Association. Google ScholarGoogle ScholarCross RefCross Ref
  36. Microsoft. 2021. DirectX Raytracing (DXR) Functional Spec. https://microsoft.github.io/DirectX-Specs/d3d/Raytracing.htmlGoogle ScholarGoogle Scholar
  37. Bochang Moon, Nathan Carr, and Sung-Eui Yoon. 2014. Adaptive rendering based on weighted local regression. ACM TOG (2014).Google ScholarGoogle Scholar
  38. Bochang Moon, Steven McDonagh, Kenny Mitchell, and Markus Gross. 2016. Adaptive polynomial rendering. ACM Transactions on Graphics (TOG) 35, 4 (2016), 1--10.Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Thomas Müller, Brian McWilliams, Fabrice Rousselle, Markus Gross, and Jan Novák. 2019. Neural importance sampling. ACM Transactions on Graphics (TOG) 38, 5 (2019), 1--19.Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Jacob Munkberg and Jon Hasselgren. 2020. Neural Denoising with Layer Embeddings. In Computer Graphics Forum, Vol. 39. Wiley Online Library, 1--12.Google ScholarGoogle Scholar
  41. Ryan S Overbeck, Craig Donner, and Ravi Ramamoorthi. 2009. Adaptive wavelet rendering. ACM SIGGRAPH Asia (2009).Google ScholarGoogle Scholar
  42. Steven G. Parker, Heiko Friedrich, David Luebke, Keith Morley, James Bigler, Jared Hoberock, David McAllister, Austin Robison, Andreas Dietrich, Greg Humphreys, Morgan McGuire, and Martin Stich. 2013. GPU Ray Tracing. Commun. ACM 56, 5 (May 2013), 93--101. Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. 2019. PyTorch: An Imperative Style, High-Performance Deep Learning Library. In Advances in Neural Information Processing Systems 32, H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett (Eds.). Curran Associates, Inc., 8024--8035. http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdfGoogle ScholarGoogle ScholarDigital LibraryDigital Library
  44. Matt Pharr, Wenzel Jakob, and Greg Humphreys. 2016. Physically based rendering: From theory to implementation. Morgan Kaufmann.Google ScholarGoogle Scholar
  45. Erik Reinhard, Michael Stark, Peter Shirley, and James Ferwerda. 2002. Photographic tone reproduction for digital images. In Proceedings of the 29th annual conference on Computer graphics and interactive techniques. 267--276.Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. Olaf Ronneberger, Philipp Fischer, and Thomas Brox. 2015. U-net: Convolutional networks for biomedical image segmentation. In International Conference on Medical image computing and computer-assisted intervention. Springer, 234--241.Google ScholarGoogle ScholarCross RefCross Ref
  47. Fabrice Rousselle, Claude Knaus, and Matthias Zwicker. 2011. Adaptive Sampling and Reconstruction Using Greedy Error Minimization. ACM Trans. Graph. 30, 6 (Dec. 2011), 1--12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  48. Fabrice Rousselle, Claude Knaus, and Matthias Zwicker. 2012. Adaptive rendering with non-local means filtering. ACM SIGGRAPH Asia (2012).Google ScholarGoogle Scholar
  49. Fabrice Rousselle, Marco Manzi, and Matthias Zwicker. 2013. Robust denoising using feature and color information. In Computer Graphics Forum, Vol. 32. Wiley Online Library, 121--130.Google ScholarGoogle Scholar
  50. Christoph Schied, Anton Kaplanyan, Chris Wyman, Anjul Patney, Chakravarty R. Alla Chaitanya, John Burgess, Shiqiu Liu, Carsten Dachsbacher, Aaron Lefohn, and Marco Salvi. 2017. Spatiotemporal Variance-guided Filtering: Real-time Reconstruction for Path-traced Global Illumination. High Performance Graphics (2017).Google ScholarGoogle ScholarDigital LibraryDigital Library
  51. Christoph Schied, Christoph Peters, and Carsten Dachsbacher. 2018. Gradient estimation for real-time adaptive temporal filtering. Proceedings of the ACM on Computer Graphics and Interactive Techniques 1, 2 (2018), 1--16.Google ScholarGoogle ScholarDigital LibraryDigital Library
  52. Pradeep Sen and Soheil Darabi. 2012. On filtering the noise from the random parameters in Monte Carlo rendering. ACM TOG (2012).Google ScholarGoogle Scholar
  53. Carlo Tomasi and Roberto Manduchi. 1998. Bilateral filtering for gray and color images. In Sixth international conference on computer vision (IEEE Cat. No. 98CH36271). IEEE, 839--846.Google ScholarGoogle ScholarCross RefCross Ref
  54. Eric Veach and Leonidas Guibas. 1995. Bidirectional estimators for light transport. In Photorealistic Rendering Techniques. Springer, 145--167.Google ScholarGoogle Scholar
  55. Thijs Vogels, Fabrice Rousselle, Brian McWilliams, Gerhard Röthlin, Alex Harvill, David Adler, Mark Meyer, and Jan Novák. 2018. Denoising with kernel prediction and asymmetric loss functions. ACM Transactions on Graphics (TOG) 37, 4 (2018), 1--15.Google ScholarGoogle ScholarDigital LibraryDigital Library
  56. Yue Wu, Brian Tracey, Premkumar Natarajan, and Joseph P Noonan. 2013. James-Stein type center pixel weights for non-local means image denoising. IEEE Signal Processing Letters 20, 4 (2013), 411--414.Google ScholarGoogle ScholarCross RefCross Ref
  57. Bing Xu, Junfei Zhang, Rui Wang, Kun Xu, Yong-Liang Yang, Chuan Li, and Rui Tang. 2019. Adversarial Monte Carlo denoising with conditioned auxiliary feature modulation. ACM Trans. Graph. 38, 6 (2019), 224--1.Google ScholarGoogle ScholarDigital LibraryDigital Library
  58. Fisher Yu and Vladlen Koltun. 2016. Multi-Scale Context Aggregation by Dilated Convolutions. In ICLR.Google ScholarGoogle Scholar
  59. M. Zwicker, W. Jarosz, J. Lehtinen, B. Moon, R. Ramamoorthi, F. Rousselle, P. Sen, C. Soler, and S.-E. Yoon. 2015. Recent Advances in Adaptive Sampling and Reconstruction for Monte Carlo Rendering. Computer Graphics Forum (Proc. EG) (2015).Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Interactive Monte Carlo denoising using affinity of neural features

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in

      Full Access

      • Published in

        cover image ACM Transactions on Graphics
        ACM Transactions on Graphics  Volume 40, Issue 4
        August 2021
        2170 pages
        ISSN:0730-0301
        EISSN:1557-7368
        DOI:10.1145/3450626
        Issue’s Table of Contents

        Copyright © 2021 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 19 July 2021
        Published in tog Volume 40, Issue 4

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader