skip to main content
research-article
Open Access

HodgeNet: learning spectral geometry on triangle meshes

Published:19 July 2021Publication History
Skip Abstract Section

Abstract

Constrained by the limitations of learning toolkits engineered for other applications, such as those in image processing, many mesh-based learning algorithms employ data flows that would be atypical from the perspective of conventional geometry processing. As an alternative, we present a technique for learning from meshes built from standard geometry processing modules and operations. We show that low-order eigenvalue/eigenvector computation from operators parameterized using discrete exterior calculus is amenable to efficient approximate backpropagation, yielding spectral per-element or per-mesh features with similar formulas to classical descriptors like the heat/wave kernel signatures. Our model uses few parameters, generalizes to high-resolution meshes, and exhibits performance and time complexity on par with past work.

Skip Supplemental Material Section

Supplemental Material

3450626.3459797.mp4

References

  1. James Atwood and Don Towsley. 2016. Diffusion-convolutional neural networks. In Proc. NeurIPS. 1993--2001.Google ScholarGoogle Scholar
  2. Oscar Kin-Chung Au, Youyi Zheng, Menglin Chen, Pengfei Xu, and Chiew-Lan Tai. 2011. Mesh segmentation with concavity-aware fields. IEEE Transactions on Visualization and Computer Graphics 18, 7 (2011), 1125--1134.Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Mathieu Aubry, Ulrich Schlickewei, and Daniel Cremers. 2011. The wave kernel signature: A quantum mechanical approach to shape analysis. In Proc. ICCV workshops. 1626--1633.Google ScholarGoogle ScholarCross RefCross Ref
  4. Mirela Ben-Chen, Adrian Butscher, Justin Solomon, and Leonidas Guibas. 2010. On discrete Killing vector fields and patterns on surfaces. In Computer Graphics Forum, Vol. 29. 1701--1711.Google ScholarGoogle ScholarCross RefCross Ref
  5. Davide Boscaini, Davide Eynard, Drosos Kourounis, and Michael Bronstein. 2015a. Shape-from-operator: Recovering shapes from intrinsic operators. In Computer Graphics Forum, Vol. 34. 265--274.Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Davide Boscaini, Jonathan Masci, Simone Melzi, Michael Bronstein, Umberto Castellani, and Pierre Vandergheynst. 2015b. Learning class-specific descriptors for deformable shapes using localized spectral convolutional networks. In Computer Graphics Forum, Vol. 34. 13--23.Google ScholarGoogle ScholarCross RefCross Ref
  7. Davide Boscaini, Jonathan Masci, Emanuele Rodolà, and Michael Bronstein. 2016. Learning shape correspondence with anisotropic convolutional neural networks. In Proc. NeurIPS.Google ScholarGoogle Scholar
  8. Alexander Bronstein, Michael Bronstein, Leonidas Guibas, and Maks Ovsjanikov. 2011. Shape Google: Geometric words and expressions for invariant shape retrieval. ACM Transactions on Graphics 30, 1 (2011), 1--20.Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Michael Bronstein and Alexander Bronstein. 2010. Shape recognition with spectral distances. IEEE Transactions on Pattern Analysis and Machine Intelligence 33, 5 (2010), 1065--1071.Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Michael Bronstein, Joan Bruna, Yann LeCun, Arthur Szlam, and Pierre Vandergheynst. 2017. Geometric deep learning: going beyond Euclidean data. IEEE Signal Processing Magazine 34, 4 (2017), 18--42.Google ScholarGoogle ScholarCross RefCross Ref
  11. Michael Bronstein and Iasonas Kokkinos. 2010. Scale-invariant heat kernel signatures for non-rigid shape recognition. In Proc. CVPR. 1704--1711.Google ScholarGoogle ScholarCross RefCross Ref
  12. Joan Bruna, Wojciech Zaremba, Arthur Szlam, and Yann LeCun. 2013. Spectral networks and locally connected networks on graphs. arXiv:1312.6203 (2013).Google ScholarGoogle Scholar
  13. Max Budninskiy, Ameera Abdelaziz, Yiying Tong, and Mathieu Desbrun. 2020. Laplacian-optimized diffusion for semi-supervised learning. Computer Aided Geometric Design 79 (2020), 101864.Google ScholarGoogle ScholarCross RefCross Ref
  14. Ken Chan and Justin Wan. 2013. Reconstruction of missing cells by a Killing energy minimizing nonrigid image registration. In International Conference of the IEEE Engineering in Medicine and Biology Society. 3000--3003.Google ScholarGoogle ScholarCross RefCross Ref
  15. Yoni Choukroun, Gautam Pai, and Ron Kimmel. 2018. Sparse approximation of 3D meshes using the spectral geometry of the Hamiltonian operator. Journal of Mathematical Imaging and Vision 60, 6 (2018), 941--952.Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Sebastian Claici, Mikhail Bessmeltsev, Scott Schaefer, and Justin Solomon. 2017. Isometry-aware preconditioning for mesh parameterization. In Computer Graphics Forum, Vol. 36. 37--47.Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Etienne Corman, Justin Solomon, Mirela Ben-Chen, Leonidas Guibas, and Maks Ovsjanikov. 2017. Functional characterization of intrinsic and extrinsic geometry. ACM Transactions on Graphics 36, 2 (2017), 1--17.Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Luca Cosmo, Mikhail Panine, Arianna Rampini, Maks Ovsjanikov, Michael Bronstein, and Emanuele Rodolà. 2019. Isospectralization, or how to hear shape, style, and correspondence. In Proc. CVPR. 7529--7538.Google ScholarGoogle ScholarCross RefCross Ref
  19. Fernando de Goes, Mathieu Desbrun, and Yiying Tong. 2016. Vector field processing on triangle meshes. In ACM SIGGRAPH 2016 Courses. 1--49.Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Pim de Haan, Maurice Weiler, Taco Cohen, and Max Welling. 2020. Gauge Equivariant Mesh CNNs: Anisotropic convolutions on geometric graphs. arXiv:2003.05425 (2020).Google ScholarGoogle Scholar
  21. Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. 2016. Convolutional neural networks on graphs with fast localized spectral filtering. Proc. NeurIPS 29 (2016), 3844--3852.Google ScholarGoogle Scholar
  22. Mathieu Desbrun, Anil Hirani, Melvin Leok, and Jerrold E Marsden. 2005. Discrete exterior calculus. arXiv preprint math/0508341 (2005).Google ScholarGoogle Scholar
  23. Nicolas Donati, Abhishek Sharma, and Maks Ovsjanikov. 2020. Deep geometric functional maps: Robust feature learning for shape correspondence. In Proc. CVPR. 8592--8601.Google ScholarGoogle ScholarCross RefCross Ref
  24. Moshe Eliasof and Eran Treister. 2020. DiffGCN: Graph convolutional networks via differential operators and algebraic multigrid pooling. Proc. NeurIPS (2020).Google ScholarGoogle Scholar
  25. Yutong Feng, Yifan Feng, Haoxuan You, Xibin Zhao, and Yue Gao. 2019. MeshNet: Mesh neural network for 3D shape representation. In Proc. AAAI, Vol. 33. 8279--8286.Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Matthias Fey, Jan Eric Lenssen, Frank Weichert, and Heinrich Müller. 2018. SplineCNN: Fast geometric deep learning with continuous B-spline kernels. In Proc. CVPR. 869--877.Google ScholarGoogle ScholarCross RefCross Ref
  27. Jun Gao, Wenzheng Chen, Tommy Xiang, Alec Jacobson, Morgan McGuire, and Sanja Fidler. 2020. Learning deformable tetrahedral meshes for 3D reconstruction. Proc. NeurIPS 33 (2020).Google ScholarGoogle Scholar
  28. Xianfeng Gu, Steven Gortler, and Hugues Hoppe. 2002. Geometry images. In Proc. SIGGRAPH. 355--361.Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Niv Haim, Nimrod Segol, Heli Ben-Hamu, Haggai Maron, and Yaron Lipman. 2019. Surface networks via general covers. In Proc. ICCV. 632--641.Google ScholarGoogle ScholarCross RefCross Ref
  30. Rana Hanocka, Amir Hertz, Noa Fish, Raja Giryes, Shachar Fleishman, and Daniel Cohen-Or. 2019. MeshCNN: A network with an edge. ACM Transactions on Graphics 38, 4 (2019), 1--12.Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Rana Hanocka, Gal Metzer, Raja Giryes, and Daniel Cohen-Or. 2020. Point2Mesh: A self-prior for deformable meshes. ACM Transactions on Graphics 39, 4 (July 2020).Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Wenchong He, Zhe Jiang, Chengming Zhang, and Arpan Man Sainju. 2020. CurvaNet: Geometric deep learning based on directional curvature for 3D shape analysis. In Proc. KDD. 2214--2224.Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Mikael Henaff, Joan Bruna, and Yann LeCun. 2015. Deep convolutional networks on graph-structured data. arXiv:1506.05163 (2015).Google ScholarGoogle Scholar
  34. Amir Hertz, Rana Hanocka, Raja Giryes, and Daniel Cohen-Or. 2020. Deep geometric texture synthesis. ACM Transactions on Graphics 39, 4 (July 2020).Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Klaus Hildebrandt, Christian Schulz, Christoph von Tycowicz, and Konrad Polthier. 2012. Modal shape analysis beyond Laplacian. (2012).Google ScholarGoogle Scholar
  36. Jingwei Huang, Haotian Zhang, Li Yi, Thomas Funkhouser, Matthias Nießner, and Leonidas Guibas. 2019. TextureNet: Consistent local parametrizations for learning from high-resolution signals on meshes. In Proc. CVPR. 4440--4449.Google ScholarGoogle ScholarCross RefCross Ref
  37. Qi-Xing Huang, Martin Wicke, Bart Adams, and Leonidas Guibas. 2009. Shape decomposition using modal analysis. In Computer Graphics Forum, Vol. 28. 407--416.Google ScholarGoogle ScholarCross RefCross Ref
  38. Evangelos Kalogerakis, Melinos Averkiou, Subhransu Maji, and Siddhartha Chaudhuri. 2017. 3D shape segmentation with projective convolutional networks. In Proc. CVPR. 3779--3788.Google ScholarGoogle ScholarCross RefCross Ref
  39. Thomas Kipf and Max Welling. 2017. Semi-supervised classification with graph convolutional networks. In Proc. ICLR.Google ScholarGoogle Scholar
  40. Ilya Kostrikov, Zhongshi Jiang, Daniele Panozzo, Denis Zorin, and Joan Bruna. 2018. Surface networks. In Proc. CVPR. 2540--2548.Google ScholarGoogle ScholarCross RefCross Ref
  41. Artiom Kovnatsky, Michael Bronstein, Alexander Bronstein, and Ron Kimmel. 2011. Photometric heat kernel signatures. In International Conference on Scale Space and Variational Methods in Computer Vision. 616--627.Google ScholarGoogle Scholar
  42. Alon Lahav and Ayellet Tal. 2020. MeshWalker: Deep mesh understanding by random walks. arXiv:2006.05353 (2020).Google ScholarGoogle Scholar
  43. Ron Levie, Federico Monti, Xavier Bresson, and Michael Bronstein. 2018. CayleyNets: Graph convolutional neural networks with complex rational spectral filters. IEEE Transactions on Signal Processing 67, 1 (2018), 97--109.Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. Z. Lian, A. Godil, B. Bustos, M. Daoudi, J. Hermans, S. Kawamura, Y. Kurita, G. Lavoué, H. V. Nguyen, R. Ohbuchi, Y. Ohkita, Y. Ohishi, F. Porikli, M. Reuter, I. Sipiran, D. Smeets, P. Suetens, H. Tabia, and D. Vandermeulen. 2011. SHREC '11 Track: Shape Retrieval on Non-rigid 3D Watertight Meshes. In Eurographics Workshop on 3D Object Retrieval, H. Laga, T. Schreck, A. Ferreira, A. Godil, I. Pratikakis, and R. Veltkamp (Eds.). The Eurographics Association. Google ScholarGoogle ScholarCross RefCross Ref
  45. Isaak Lim, Alexander Dielen, Marcel Campen, and Leif Kobbelt. 2018. A simple approach to intrinsic correspondence learning on unstructured 3D meshes. In Proc. ECCV.Google ScholarGoogle Scholar
  46. Or Litany, Tal Remez, Emanuele Rodolà, Alex Bronstein, and Michael Bronstein. 2017. Deep functional maps: Structured prediction for dense shape correspondence. In Proc. ICCV. 5659--5667.Google ScholarGoogle ScholarCross RefCross Ref
  47. Roee Litman and Alexander Bronstein. 2013. Learning spectral descriptors for deformable shape correspondence. IEEE Transactions on Pattern Analysis and Machine Intelligence 36, 1 (2013), 171--180.Google ScholarGoogle ScholarDigital LibraryDigital Library
  48. Hsueh-Ti Derek Liu, Alec Jacobson, and Keenan Crane. 2017. A Dirac operator for extrinsic shape analysis. In Computer Graphics Forum, Vol. 36. 139--149.Google ScholarGoogle ScholarDigital LibraryDigital Library
  49. Hsueh-Ti Derek Liu, Vladimir Kim, Siddhartha Chaudhuri, Noam Aigerman, and Alec Jacobson. 2020. Neural subdivision. ACM Transactions on Graphics 39, 4 (July 2020).Google ScholarGoogle Scholar
  50. Rong Liu and Hao Zhang. 2007. Mesh segmentation via spectral embedding and contour analysis. In Computer Graphics Forum, Vol. 26. 385--394.Google ScholarGoogle ScholarCross RefCross Ref
  51. Ilya Loshchilov and Frank Hutter. 2019. Decoupled Weight Decay Regularization. In International Conference on Learning Representations. https://openreview.net/forum?id=Bkg6RiCqY7Google ScholarGoogle Scholar
  52. A.L. Maas, A.Y. Hannun, and A.Y. Ng. 2013. Rectifier Nonlinearities Improve Neural Network Acoustic Models. In Proceedings of the International Conference on Machine Learning. Atlanta, Georgia.Google ScholarGoogle Scholar
  53. Haggai Maron, Meirav Galun, Noam Aigerman, Miri Trope, Nadav Dym, Ersin Yumer, Vladimir Kim, and Yaron Lipman. 2017. Convolutional neural networks on surfaces via seamless toric covers. ACM Transactions on Graphics 36, 4 (2017).Google ScholarGoogle ScholarDigital LibraryDigital Library
  54. Jonathan Masci, Davide Boscaini, Michael Bronstein, and Pierre Vandergheynst. 2015. Geodesic convolutional neural networks on Riemannian manifolds. In Proc. ICCV. 37--45.Google ScholarGoogle ScholarDigital LibraryDigital Library
  55. Francesco Milano, Antonio Loquercio, Antoni Rosinol, Davide Scaramuzza, and Luca Carlone. 2020. Primal-Dual Mesh Convolutional Neural Networks. In Proc. NeurIPS.Google ScholarGoogle Scholar
  56. Federico Monti, Davide Boscaini, Jonathan Masci, Emanuele Rodola, Jan Svoboda, and Michael Bronstein. 2017. Geometric deep learning on graphs and manifolds using mixture model CNNs. In Proc. CVPR.Google ScholarGoogle ScholarCross RefCross Ref
  57. Maks Ovsjanikov, Mirela Ben-Chen, Justin Solomon, Adrian Butscher, and Leonidas Guibas. 2012. Functional maps: A flexible representation of maps between shapes. ACM Transactions on Graphics 31, 4 (2012), 1--11.Google ScholarGoogle ScholarDigital LibraryDigital Library
  58. Maks Ovsjanikov, Quentin Mérigot, Facundo Mémoli, and Leonidas Guibas. 2010. One point isometric matching with the heat kernel. In Computer Graphics Forum, Vol. 29. 1555--1564.Google ScholarGoogle ScholarCross RefCross Ref
  59. Maks Ovsjanikov, Jian Sun, and Leonidas Guibas. 2008. Global intrinsic symmetries of shapes. In Computer Graphics Forum, Vol. 27. 1341--1348.Google ScholarGoogle ScholarDigital LibraryDigital Library
  60. Hao Pan, Shilin Liu, Yang Liu, and Xin Tong. 2018. Convolutional neural networks on 3D surfaces using parallel frames. arXiv:1808.04952 (2018).Google ScholarGoogle Scholar
  61. Adrien Poulenard and Maks Ovsjanikov. 2018. Multi-directional geodesic neural networks via equivariant convolution. ACM Transactions on Graphics 37, 6 (2018), 1--14.Google ScholarGoogle ScholarDigital LibraryDigital Library
  62. Yi-Ling Qiao, Lin Gao, Paul Rosin, Yu-Kun Lai, Xilin Chen, et al. 2020. Learning on 3D meshes with Laplacian encoding and pooling. IEEE Transactions on Visualization and Computer Graphics (2020).Google ScholarGoogle Scholar
  63. Dan Raviv, Michael Bronstein, Alexander Bronstein, and Ron Kimmel. 2010. Volumetric heat kernel signatures. In Proceedings of the ACM Workshop on 3D Object Retrieval. 39--44.Google ScholarGoogle ScholarDigital LibraryDigital Library
  64. Dan Raviv, Michael Bronstein, Alexander Bronstein, Ron Kimmel, and Nir Sochen. 2011. Affine-invariant diffusion geometry for the analysis of deformable 3D shapes. In CVPR 2011. 2361--2367.Google ScholarGoogle ScholarDigital LibraryDigital Library
  65. Martin Reuter, Franz-Erich Wolter, and Niklas Peinecke. 2006. Laplace-Beltrami spectra as 'shape-DNA' of surfaces and solids. Computer-Aided Design 38, 4 (2006), 342--366.Google ScholarGoogle ScholarDigital LibraryDigital Library
  66. Raif Rustamov. 2007. Laplace-Beltrami eigenfunctions for deformation invariant shape representation. In Symposium on Geometry Processing. 225--233.Google ScholarGoogle Scholar
  67. Lisa Schneider, Annika Niemann, Oliver Beuing, Bernhard Preim, and Sylvia Saalfeld. 2020. MedMeshCNN-Enabling MeshCNN for medical surface models. arXiv:2009.04893 (2020).Google ScholarGoogle Scholar
  68. Stefan Schonsheck, Bin Dong, and Rongjie Lai. 2018. Parallel transport convolution: A new tool for convolutional neural networks on manifolds. arXiv:1805.07857 (2018).Google ScholarGoogle Scholar
  69. Jonas Schult, Francis Engelmann, Theodora Kontogianni, and Bastian Leibe. 2020. DualConvMesh-Net: Joint geodesic and Euclidean convolutions on 3D meshes. In Proc. CVPR. 8612--8622.Google ScholarGoogle ScholarCross RefCross Ref
  70. Konstantinos Sfikas, Theoharis Theoharis, and Ioannis Pratikakis. 2017. Exploiting the PANORAMA representation for convolutional neural network classification and retrieval. Proc. 3DOR 6 (2017), 7.Google ScholarGoogle Scholar
  71. Abhishek Sharma and Maks Ovsjanikov. 2020. Weakly supervised deep functional map for shape matching. In Proc. NeurIPS.Google ScholarGoogle Scholar
  72. Nicholas Sharp, Souhaib Attaiki, Keenan Crane, and Maks Ovsjanikov. 2020. Diffusion is all you need for learning on surfaces. arXiv:2012.00888 (2020).Google ScholarGoogle Scholar
  73. Nicholas Sharp and Maks Ovsjanikov. 2020. PointTriNet: Learned triangulation of 3D point sets. In Proc. ECCV.Google ScholarGoogle ScholarDigital LibraryDigital Library
  74. Nicholas Sharp, Yousuf Soliman, and Keenan Crane. 2019. The vector heat method. ACM Transactions on Graphics 38, 3 (2019), 1--19.Google ScholarGoogle ScholarDigital LibraryDigital Library
  75. Baoguang Shi, Song Bai, Zhichao Zhou, and Xiang Bai. 2015. DeepPano: Deep panoramic representation for 3-d shape recognition. IEEE Signal Processing Letters 22, 12 (2015), 2339--2343.Google ScholarGoogle ScholarCross RefCross Ref
  76. Amit Singer and H.-T. Wu. 2012. Vector diffusion maps and the connection Laplacian. Communications on Pure and Applied Mathematics 65, 8 (2012), 1067--1144.Google ScholarGoogle ScholarCross RefCross Ref
  77. Ayan Sinha, Jing Bai, and Karthik Ramani. 2016. Deep learning 3D shape surfaces using geometry images. In Proc. ECCV. 223--240.Google ScholarGoogle ScholarCross RefCross Ref
  78. Miroslava Slavcheva, Maximilian Baust, Daniel Cremers, and Slobodan Ilic. 2017. Killing-Fusion: Non-rigid 3D reconstruction without correspondences. In Proc. CVPR. 1386--1395.Google ScholarGoogle Scholar
  79. Justin Solomon, Mirela Ben-Chen, Adrian Butscher, and Leonidas Guibas. 2011a. AsKilling-as-possible vector fields for planar deformation. In Computer Graphics Forum, Vol. 30. 1543--1552.Google ScholarGoogle ScholarCross RefCross Ref
  80. Justin Solomon, Mirela Ben-Chen, Adrian Butscher, and Leonidas Guibas. 2011b. Discovery of intrinsic primitives on triangle meshes. In Computer Graphics Forum, Vol. 30. 365--374.Google ScholarGoogle ScholarCross RefCross Ref
  81. An Ping Song, Xin Yi Di, Xiao Kang Xu, and Zi Heng Song. 2020. MeshGraphNet: An effective 3D polygon mesh recognition With topology reconstruction. IEEE Access 8 (2020), 205181--205189.Google ScholarGoogle ScholarCross RefCross Ref
  82. M. Spagnuolo, M. Bronstein, A. Bronstein, and A. Ferreira. 2012. Affine-invariant photometric heat kernel signatures. Eurographics (2012), 39--46.Google ScholarGoogle Scholar
  83. Hang Su, Subhransu Maji, Evangelos Kalogerakis, and Erik Learned-Miller. 2015. Multi-view convolutional neural networks for 3D shape recognition. In Proc. ICCV. 945--953.Google ScholarGoogle ScholarDigital LibraryDigital Library
  84. Jian Sun, Maks Ovsjanikov, and Leonidas Guibas. 2009. A concise and provably informative multi-scale signature based on heat diffusion. In Computer Graphics Forum, Vol. 28. 1383--1392.Google ScholarGoogle ScholarDigital LibraryDigital Library
  85. Zhiyu Sun, Ethan Rooke, Jerome Charton, Yusen He, Jia Lu, and Stephen Baek. 2020. ZerNet: Convolutional neural networks on arbitrary surfaces via Zernike local tangent space estimation. In Computer Graphics Forum.Google ScholarGoogle Scholar
  86. Michael Tao, Justin Solomon, and Adrian Butscher. 2016. Near-isometric level set tracking. In Computer Graphics Forum, Vol. 35. 65--77.Google ScholarGoogle ScholarCross RefCross Ref
  87. Maxim Tatarchenko, Jaesik Park, Vladlen Koltun, and Qian-Yi Zhou. 2018. Tangent convolutions for dense prediction in 3D. In Proc. CVPR. 3887--3896.Google ScholarGoogle ScholarCross RefCross Ref
  88. Nitika Verma, Edmond Boyer, and Jakob Verbeek. 2018. FeastNet: Feature-steered graph convolutions for 3D shape analysis. In Proc. CVPR. 2598--2606.Google ScholarGoogle ScholarCross RefCross Ref
  89. Daniel Vlasic, Ilya Baran, Wojciech Matusik, and Jovan Popović. 2008. Articulated mesh animation from multi-view silhouettes. In ACM SIGGRAPH 2008 papers. 1--9.Google ScholarGoogle ScholarDigital LibraryDigital Library
  90. Hao Wang, Tong Lu, Oscar Kin-Chung Au, and Chiew-Lan Tai. 2014. Spectral 3D mesh segmentation with a novel single segmentation field. Graphical Models 76, 5 (2014), 440--456.Google ScholarGoogle ScholarDigital LibraryDigital Library
  91. Pengyu Wang, Yuan Gan, Panpan Shui, Fenggen Yu, Yan Zhang, Songle Chen, and Zhengxing Sun. 2018b. 3D shape segmentation via shape fully convolutional networks. Computers & Graphics 70 (2018), 128--139.Google ScholarGoogle ScholarCross RefCross Ref
  92. Yunhai Wang, Shmulik Asafi, Oliver Van Kaick, Hao Zhang, Daniel Cohen-Or, and Baoquan Chen. 2012. Active co-analysis of a set of shapes. ACM Transactions on Graphics (TOG) 31, 6 (2012), 1--10.Google ScholarGoogle ScholarDigital LibraryDigital Library
  93. Yu Wang, Mirela Ben-Chen, Iosif Polterovich, and Justin Solomon. 2018a. Steklov spectral geometry for extrinsic shape analysis. ACM Transactions on Graphics 38, 1 (2018), 1--21.Google ScholarGoogle ScholarDigital LibraryDigital Library
  94. Yu Wang, Vladimir Kim, Michael Bronstein, and Justin Solomon. 2019. Learning geometric operators on meshes. In Representation Learning on Graphs and Manifolds (ICLR workshop).Google ScholarGoogle Scholar
  95. Yu Wang and Justin Solomon. 2019. Intrinsic and extrinsic operators for shape analysis. In Handbook of Numerical Analysis. Vol. 20. 41--115.Google ScholarGoogle Scholar
  96. Lingyu Wei, Qixing Huang, Duygu Ceylan, Etienne Vouga, and Hao Li. 2016. Dense human body correspondences using convolutional networks. In Proc. CVPR. 1544--1553.Google ScholarGoogle ScholarCross RefCross Ref
  97. Ruben Wiersma, Elmar Eisemann, and Klaus Hildebrandt. 2020. CNNs on surfaces using rotation-equivariant features. ACM Transactions on Graphics 39, 4 (2020).Google ScholarGoogle ScholarDigital LibraryDigital Library
  98. Haotian Xu, Ming Dong, and Zichun Zhong. 2017. Directionally convolutional networks for 3D shape segmentation. In Proc. ICCV. 2698--2707.Google ScholarGoogle ScholarCross RefCross Ref
  99. Yuqi Yang, Shilin Liu, Hao Pan, Yang Liu, and Xin Tong. 2020. PFCNN: Convolutional neural networks on 3D surfaces using parallel frames. In Proc. CVPR. 13578--13587.Google ScholarGoogle ScholarCross RefCross Ref
  100. Zi Ye, Olga Diamanti, Chengcheng Tang, Leonidas Guibas, and Tim Hoffmann. 2018. A unified discrete framework for intrinsic and extrinsic Dirac operators for geometry processing. In Computer Graphics Forum, Vol. 37. 93--106.Google ScholarGoogle ScholarCross RefCross Ref
  101. Li Yi, Hao Su, Xingwen Guo, and Leonidas Guibas. 2017. SpecSyncCNN: Synchronized spectral CNN for 3D shape segmentation. In Proc. CVPR. 2282--2290.Google ScholarGoogle Scholar
  102. Wei Zeng, Ren Guo, Feng Luo, and Xianfeng Gu. 2012. Discrete heat kernel determines discrete Riemannian metric. Graphical Models 74, 4 (2012), 121--129.Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. HodgeNet: learning spectral geometry on triangle meshes

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in

        Full Access

        • Published in

          cover image ACM Transactions on Graphics
          ACM Transactions on Graphics  Volume 40, Issue 4
          August 2021
          2170 pages
          ISSN:0730-0301
          EISSN:1557-7368
          DOI:10.1145/3450626
          Issue’s Table of Contents

          Copyright © 2021 Owner/Author

          Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses, contact the Owner/Author.

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 19 July 2021
          Published in tog Volume 40, Issue 4

          Check for updates

          Qualifiers

          • research-article

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader