skip to main content
research-article
Open Access

Fast quasi-harmonic weights for geometric data interpolation

Published:19 July 2021Publication History
Skip Abstract Section

Abstract

We propose quasi-harmonic weights for interpolating geometric data, which are orders of magnitude faster to compute than state-of-the-art. Currently, interpolation (or, skinning) weights are obtained by solving large-scale constrained optimization problems with explicit constraints to suppress oscillative patterns, yielding smooth weights only after a substantial amount of computation time. As an alternative, our weights are obtained as minima of an unconstrained problem that can be optimized quickly using straightforward numerical techniques. We consider weights that can be obtained as solutions to a parameterized family of second-order elliptic partial differential equations. By leveraging the maximum principle and careful parameterization, we pose weight computation as an inverse problem of recovering optimal anisotropic diffusivity tensors. In addition, we provide a customized ADAM solver that significantly reduces the number of gradient steps; our solver only requires inverting tens of linear systems that share the same sparsity pattern. Overall, our approach achieves orders of magnitude acceleration compared to previous methods, allowing weight computation in near real-time.

Skip Supplemental Material Section

Supplemental Material

3450626.3459801.mp4

References

  1. Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al. 2016. Tensorflow: A system for large-scale machine learning. In 12th {USENIX} Symposium on Operating Systems Design and Implementation ({OSDI} 16). 265--283.Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Marc Alexa. 2002. Linear combination of transformations. In ACM Transactions on Graphics (TOG), Vol. 21. ACM, 380--387.Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Norman I Badler and Mary Ann Morris. 1982. Modelling flexible articulated objects. In Proc. Computer Graphics' 82, Online Conf. 305--314.Google ScholarGoogle Scholar
  4. Seungbae Bang and Sung-Hee Lee. 2018. Spline Interface for Intuitive Skinning Weight Editing. ACM Transactions on Graphics (TOG) 37, 5 (2018), 174.Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Sumukh Bansal and Aditya Tatu. 2019. Affine interpolation in a lie group framework. ACM Transactions on Graphics (TOG) 38, 4 (2019), 71.Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Ilya Baran and Jovan Popović. 2007. Automatic rigging and animation of 3d characters. In ACM Transactions on graphics (TOG), Vol. 26. ACM, 72.Google ScholarGoogle Scholar
  7. Fred L. Bookstein. 1989. Principal warps: Thin-plate splines and the decomposition of deformations. IEEE Transactions on pattern analysis and machine intelligence 11, 6 (1989), 567--585.Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Mario Botsch and Leif Kobbelt. 2004. An intuitive framework for real-time freeform modeling. ACM Transactions on Graphics (TOG) 23, 3 (2004), 630--634.Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Xiang Chen, Changxi Zheng, and Kun Zhou. 2016. Example-based subspace stress analysis for interactive shape design. IEEE transactions on visualization and computer graphics 23, 10 (2016), 2314--2327.Google ScholarGoogle Scholar
  10. Keenan Crane, Clarisse Weischedel, and Max Wardetzky. 2013. Geodesics in heat: A new approach to computing distance based on heat flow. Transactions on Graphics 32, 5 (2013), 152.Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Timothy A Davis et al. 2015. SuiteSparse: A suite of sparse matrix software. URL http://faculty.cse.tamu.edu/davis/suitesparse.html (2015).Google ScholarGoogle Scholar
  12. Olivier Dionne and Martin de Lasa. 2013. Geodesic voxel binding for production character meshes. In Proceedings of the 12th ACM SIGGRAPH/Eurographics Symposium on Computer Animation. 173--180.Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Jérôme Droniou and Christophe Le Potier. 2011. Construction and convergence study of schemes preserving the elliptic local maximum principle. SIAM J. Numer. Anal. 49, 2 (2011), 459--490.Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Michael S Floater. 2003. Mean value coordinates. Computer aided geometric design 20, 1 (2003), 19--27.Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. David Gilbarg and Neil S Trudinger. 2015. Elliptic partial differential equations of second order. springer.Google ScholarGoogle Scholar
  16. Philipp Herholz, Felix Haase, and Marc Alexa. 2017. Diffusion diagrams: Voronoi cells and centroids from diffusion. In Computer Graphics Forum, Vol. 36. Wiley Online Library, 163--175.Google ScholarGoogle Scholar
  17. Michael Hinze and Tran Nhan Tam Quyen. 2016. Matrix coefficient identification in an elliptic equation with the convex energy functional method. Inverse problems 32, 8 (2016), 085007.Google ScholarGoogle Scholar
  18. Kai Hormann and Michael S Floater. 2006. Mean value coordinates for arbitrary planar polygons. ACM Transactions on Graphics (TOG) 25, 4 (2006), 1424--1441.Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Kai Hormann and Natarajan Sukumar. 2008. Maximum entropy coordinates for arbitrary polytopes. In Computer Graphics Forum, Vol. 27. Wiley Online Library, 1513--1520.Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Alec Jacobson, Ilya Baran, Ladislav Kavan, Jovan Popović, and Olga Sorkine. 2012a. Fast automatic skinning transformations. ACM Transactions on Graphics (TOG) 31, 4 (2012), 1--10.Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Alec Jacobson, Ilya Baran, Jovan Popovic, and Olga Sorkine. 2011. Bounded biharmonic weights for real-time deformation. ACM Trans. Graph. 30, 4 (2011), 78--1.Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Alec Jacobson, Zhigang Deng, Ladislav Kavan, and JP Lewis. 2014. Skinning: real-time shape deformation. In ACM SIGGRAPH 2014 Courses. ACM, 24.Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Alec Jacobson, Elif Tosun, Olga Sorkine, and Denis Zorin. 2010. Mixed finite elements for variational surface modeling. In Computer Graphics Forum, Vol. 29. 1565--1574.Google ScholarGoogle ScholarCross RefCross Ref
  24. Alec Jacobson, Tino Weinkauf, and Olga Sorkine. 2012b. Smooth shape-aware functions with controlled extrema. In Computer Graphics Forum, Vol. 31. Wiley Online Library, 1577--1586.Google ScholarGoogle Scholar
  25. Doug L James and Christopher D Twigg. 2005. Skinning mesh animations. In ACM Transactions on Graphics (TOG), Vol. 24. ACM, 399--407.Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Pushkar Joshi, Mark Meyer, Tony DeRose, Brian Green, and Tom Sanocki. 2007. Harmonic coordinates for character articulation. ACM Transactions on Graphics (TOG) 26, 3 (2007), 71.Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Tao Ju, Scott Schaefer, and Joe Warren. 2005. Mean value coordinates for closed triangular meshes. ACM Transactions on Graphics (TOG) 24, 3 (2005), 561--566.Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Ladislav Kavan, Steven Collins, Jiří Žára, and Carol O'Sullivan. 2008. Geometric skinning with approximate dual quaternion blending. ACM Transactions on Graphics (TOG) 27, 4 (2008), 105.Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Ladislav Kavan, P-P Sloan, and Carol O'Sullivan. 2010. Fast and efficient skinning of animated meshes. In Computer Graphics Forum, Vol. 29. Wiley Online Library, 327--336.Google ScholarGoogle Scholar
  30. Diederik P Kingma and Jimmy Ba. 2014. Adam:A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014).Google ScholarGoogle Scholar
  31. Andreas Kirsch. 2011. An introduction to the mathematical theory of inverse problems. Vol. 120. Springer Science & Business Media.Google ScholarGoogle Scholar
  32. Binh Huy Le and Zhigang Deng. 2012. Smooth skinning decomposition with rigid bones. ACM Transactions on Graphics (TOG) 31, 6 (2012), 199.Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Binh Huy Le and Zhigang Deng. 2014. Robust and accurate skeletal rigging frommesh sequences. ACM Transactions on Graphics (TOG) 33, 4 (2014), 84.Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Binh Huy Le and Jessica K Hodgins. 2016. Real-time skeletal skinning with optimized centers of rotation. ACM Transactions on Graphics (TOG) 35, 4 (2016), 37.Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Binh Huy Le and JP Lewis. 2019. Direct delta mush skinning and variants. ACM Trans. Graph 38, 113 (2019), 1--113.Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Xian-Ying Li and Shi-Min Hu. 2012. Poisson coordinates. IEEE Transactions on visualization and computer graphics 19, 2 (2012), 344--352.Google ScholarGoogle Scholar
  37. Yaron Lipman, David Levin, and Daniel Cohen-Or. 2008. Green coordinates. ACM Transactions on Graphics (TOG) 27, 3 (2008),78.Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Yaron Lipman, Raif M Rustamov, and Thomas A Funkhouser. 2010. Biharmonic distance. Transactions on Graphics 29, 3 (2010), 27.Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Richard Liska and Mikhail Shashkov. 2008. Enforcing the discrete maximum principle for linear finite element solutions of second-order elliptic problems. Commun. Comput. Phys. 3, 4 (2008), 852--877.Google ScholarGoogle Scholar
  40. Lijuan Liu, Youyi Zheng, Di Tang, Yi Yuan, Changjie Fan, and Kun Zhou. 2019. Neuroskinning: Automatic skin binding for production characters with deep graph networks. ACM Transactions on Graphics (TOG) 38, 4 (2019), 114.Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. Changna Lu, Weizhang Huang, and Jianxian Qiu. 2014. Maximum principle in linear finite element approximations of anisotropic diffusion-convection-reaction problems. Numer. Math. 127, 3 (2014), 515--537.Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. Nadia Magnenat-Thalmann, Richard Laperrire, and Daniel Thalmann. 1988. Joint-dependent local deformations for hand animation and object grasping. In In Proceedings on Graphics interfaceâĂŹ88. Citeseer.Google ScholarGoogle Scholar
  43. Viktoras Makauskas. 2013. ngSkinTools. https://www.ngskintools.comGoogle ScholarGoogle Scholar
  44. Jesús R Nieto and Antonio Susin. 2013. Cage based deformations: a survey. In Deformation models. Springer, 75--99.Google ScholarGoogle Scholar
  45. Gerard R Richter. 1981. An inverse problem for the steady state diffusion equation. SIAM J. Appl. Math. 41, 2 (1981), 210--221.Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. Conrad Sanderson. 2010. Armadillo: An open source C++ linear algebra library for fast prototyping and computationally intensive experiments. (2010).Google ScholarGoogle Scholar
  47. Jonathan Richard Shewchuk. 1996. Triangle:Engineering a 2D quality mesh generator and Delaunay triangulator. In Workshop on Applied Computational Geometry. Springer, 203--222.Google ScholarGoogle ScholarCross RefCross Ref
  48. Hang Si. 2015. TetGen, a Delaunay-based quality tetrahedral mesh generator. ACM Transactions on Mathematical Software (TOMS) 41, 2 (2015), 1--36.Google ScholarGoogle ScholarDigital LibraryDigital Library
  49. Robin Sibson and Vic Barnett. 1981. Interpreting multivariate data. A brief description of natural neighbor interpolation (1981), 21--36.Google ScholarGoogle Scholar
  50. Oded Stein, Eitan Grinspun, Max Wardetzky, and Alec Jacobson. 2018. Natural boundary conditions for smoothing in geometry processing. ACM Transactions on Graphics (TOG) 37, 2 (2018), 23.Google ScholarGoogle ScholarDigital LibraryDigital Library
  51. J-M Thiery and Elmar Eisemann. 2018. ARAPLBS: Robust and Efficient Elasticity-Based Optimization of Weights and Skeleton Joints for Linear Blend Skinning with Parametrized Bones. In Computer Graphics Forum, Vol. 37. Wiley Online Library, 32--44.Google ScholarGoogle Scholar
  52. Elif Tosun. 2008. Geometric modeling using high-order derivatives. Ph.D. Dissertation. Citeseer.Google ScholarGoogle Scholar
  53. Kevin Wampler. 2016. Fast and reliable example-based mesh ik for stylized deformations. ACM Transactions on Graphics (TOG) 35, 6 (2016), 235.Google ScholarGoogle ScholarDigital LibraryDigital Library
  54. Yu Wang, Alec Jacobson, Jernej Barbič, and Ladislav Kavan. 2015. Linear subspace design for real-time shape deformation. ACM Transactions on Graphics (TOG) 34, 4 (2015), 57.Google ScholarGoogle ScholarDigital LibraryDigital Library
  55. Max Wardetzky, Saurabh Mathur, Felix Kälberer, and Eitan Grinspun. 2007. Discrete Laplace operators: no free lunch. In Symposium on Geometry processing. 33--37.Google ScholarGoogle Scholar
  56. Zangyueyang Xian, Xin Tong, and Tiantian Liu. 2019. A scalable galerkin multigrid method for real-time simulation of deformable objects. ACM Transactions on Graphics (TOG) 38, 6 (2019), 162.Google ScholarGoogle ScholarDigital LibraryDigital Library
  57. Zhipei Yan and Scott Schaefer. 2019. A Family of Barycentric Coordinates for Co-Dimension 1 Manifolds with Simplicial Facets. In Computer Graphics Forum, Vol. 38. Wiley Online Library, 75--83.Google ScholarGoogle Scholar
  58. Juyong Zhang, Bailin Deng, Zishun Liu, Giuseppe Patanè, Sofien Bouaziz, Kai Hormann, and Ligang Liu. 2014. Local barycentric coordinates. ACM Transactions on Graphics (TOG) 33, 6 (2014), 188.Google ScholarGoogle ScholarDigital LibraryDigital Library
  59. Xiaojin Zhu, Zoubin Ghahramani, and John D Lafferty. 2003. Semi-supervised learning using gaussian fields and harmonic functions. In Proceedings of the 20th International conference on Machine learning (ICML-03). 912--919.Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Fast quasi-harmonic weights for geometric data interpolation

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in

    Full Access

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader