skip to main content
research-article
Open Access

Hierarchical neural reconstruction for path guiding using hybrid path and photon samples

Published:19 July 2021Publication History
Skip Abstract Section

Abstract

Path guiding is a promising technique to reduce the variance of path tracing. Although existing online path guiding algorithms can eventually learn good sampling distributions given a large amount of time and samples, the speed of learning becomes a major bottleneck. In this paper, we accelerate the learning of sampling distributions by training a light-weight neural network offline to reconstruct from sparse samples. Uniquely, we design our neural network to directly operate convolutions on a sparse quadtree, which regresses a high-quality hierarchical sampling distribution. Our approach can reconstruct reasonably accurate sampling distributions faster, allowing for efficient path guiding and rendering. In contrast to the recent offline neural path guiding techniques that reconstruct low-resolution 2D images for sampling, our novel hierarchical framework enables more fine-grained directional sampling with less memory usage, effectively advancing the practicality and efficiency of neural path guiding. In addition, we take advantage of hybrid bidirectional samples including both path samples and photons, as we have found this more robust to different light transport scenarios compared to using only one type of sample as in previous work. Experiments on diverse testing scenes demonstrate that our approach often improves rendering results with better visual quality and lower errors. Our framework can also provide the proper balance of speed, memory cost, and robustness.

Skip Supplemental Material Section

Supplemental Material

3450626.3459810.mov

References

  1. Steve Bako, Mark Meyer, Tony DeRose, and Pradeep Sen. 2019. Offline Deep Importance Sampling for Monte Carlo Path Tracing. In Computer Graphics Forum, Vol. 38. Wiley Online Library, 527--542.Google ScholarGoogle Scholar
  2. Steve Bako, Thijs Vogels, Brian McWilliams, Mark Meyer, Jan Novák, Alex Harvill, Pradeep Sen, Tony Derose, and Fabrice Rousselle. 2017. Kernel-predicting convolutional networks for denoising Monte Carlo renderings. ACM Trans. Graph. 36, 4 (2017), 97--1.Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Benedikt Bitterli. 2016. Rendering resources. https://benedikt-bitterli.me/resources/.Google ScholarGoogle Scholar
  4. LLC Blend Swap. 2016. Blend swap.Google ScholarGoogle Scholar
  5. Chakravarty R Alla Chaitanya, Anton S Kaplanyan, Christoph Schied, Marco Salvi, Aaron Lefohn, Derek Nowrouzezahrai, and Timo Aila. 2017. Interactive reconstruction of Monte Carlo image sequences using a recurrent denoising autoencoder. ACM Transactions on Graphics (TOG) 36, 4 (2017), 1--12.Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Kashyap Chitta, Jose M Alvarez, and Martial Hebert. 2020. Quadtree Generating Networks: Efficient Hierarchical Scene Parsing with Sparse Convolutions. In The IEEE Winter Conference on Applications of Computer Vision.Google ScholarGoogle Scholar
  7. Stavros Diolatzis, Adrien Gruson, Wenzel Jakob, Derek Nowrouzezahrai, and George Drettakis. 2020. Practical Product Path Guiding Using Linearly Transformed Cosines. In Computer Graphics Forum, Vol. 39. Wiley Online Library, 23--33.Google ScholarGoogle Scholar
  8. TM Evermotion. 2012. Evermotion 3d models.Google ScholarGoogle Scholar
  9. Iliyan Georgiev, Jaroslav Krivánek, Tomas Davidovic, and Philipp Slusallek. 2012. Light transport simulation with vertex connection and merging. ACM Trans. Graph. 31, 6 (2012), 192--1.Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Ben Graham. 2015. Sparse 3D convolutional neural networks. arXiv preprint arXiv:1505.02890 (2015).Google ScholarGoogle Scholar
  11. Benjamin Graham, Martin Engelcke, and Laurens Van Der Maaten. 2018. 3d semantic segmentation with submanifold sparse convolutional networks. In Proceedings of the IEEE conference on computer vision and pattern recognition. 9224--9232.Google ScholarGoogle ScholarCross RefCross Ref
  12. Benjamin Graham and Laurens van der Maaten. 2017. Submanifold sparse convolutional networks. arXiv preprint arXiv:1706.01307 (2017).Google ScholarGoogle Scholar
  13. Jerry Guo, Pablo Bauszat, Jacco Bikker, and Elmar Eisemann. 2018. Primary sample space path guiding. In Eurographics Symposium on Rendering, Vol. 2018. The Eurographics Association, 73--82.Google ScholarGoogle Scholar
  14. Toshiya Hachisuka, Shinji Ogaki, and Henrik Wann Jensen. 2008. Progressive photon mapping. In ACM SIGGRAPH Asia 2008 papers. 1--8.Google ScholarGoogle Scholar
  15. Toshiya Hachisuka, Jacopo Pantaleoni, and Henrik Wann Jensen. 2012. A path space extension for robust light transport simulation. ACM Transactions on Graphics (TOG) 31, 6 (2012), 1--10.Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Sebastian Herholz, Oskar Elek, Jiří Vorba, Hendrik Lensch, and Jaroslav Křivánek. 2016. Product importance sampling for light transport path guiding. In Computer Graphics Forum, Vol. 35. Wiley Online Library, 67--77.Google ScholarGoogle Scholar
  17. Yuchi Huo, Rui Wang, Ruzahng Zheng, Hualin Xu, Hujun Bao, and Sung-Eui Yoon. 2020. Adaptive Incident Radiance Field Sampling and Reconstruction Using Deep Reinforcement Learning. ACM Transactions on Graphics (TOG) 39, 1 (2020), 1--17.Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Wenzel Jakob. 2010. Mitsuba renderer. http://www.mitsuba-renderer.org.Google ScholarGoogle Scholar
  19. Henrik Wann Jensen. 1995. Importance driven path tracing using the photon map. In Eurographics Workshop on Rendering Techniques. Springer, 326--335.Google ScholarGoogle ScholarCross RefCross Ref
  20. Henrik Wann Jensen. 1996. Global illumination using photon maps. In Rendering Techniques' 96. Springer, 21--30.Google ScholarGoogle Scholar
  21. James T Kajiya. 1986. The rendering equation. In Proceedings of the 13th annual conference on Computer graphics and interactive techniques. 143--150.Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014).Google ScholarGoogle Scholar
  23. Claude Knaus and Matthias Zwicker. 2011. Progressive photon mapping: A probabilistic approach. ACM Transactions on Graphics (TOG) 30, 3 (2011), 25.Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Jaroslav Křivánek, Iliyan Georgiev, Toshiya Hachisuka, Petr Vévoda, Martin Šik, Derek Nowrouzezahrai, and Wojciech Jarosz. 2014. Unifying points, beams, and paths in volumetric light transport simulation. ACM Transactions on Graphics (TOG) 33, 4 (2014), 1--13.Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Pradeep Kumar Jayaraman, Jianhan Mei, Jianfei Cai, and Jianmin Zheng. 2018. Quadtree convolutional neural networks. In Proceedings of the European Conference on Computer Vision (ECCV). 546--561.Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Eric P Lafortune and Yves D Willems. 1993. Bi-directional path tracing. (1993).Google ScholarGoogle Scholar
  27. Jun Li, Kai Xu, Siddhartha Chaudhuri, Ersin Yumer, Hao Zhang, and Leonidas Guibas. 2017. Grass: Generative recursive autoencoders for shape structures. ACM Transactions on Graphics (TOG) 36, 4 (2017), 1--14.Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Manyi Li, Akshay Gadi Patil, Kai Xu, Siddhartha Chaudhuri, Owais Khan, Ariel Shamir, Changhe Tu, Baoquan Chen, Daniel Cohen-Or, and Hao Zhang. 2019. Grains: Generative recursive autoencoders for indoor scenes. ACM Transactions on Graphics (TOG) 38, 2 (2019), 1--16.Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Kaichun Mo, Paul Guerrero, Li Yi, Hao Su, Peter Wonka, Niloy J Mitra, and Leonidas J Guibas. 2019. StructureNet: hierarchical graph networks for 3D shape generation. ACM Transactions on Graphics (TOG) 38, 6 (2019), 242.Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Thomas Müller. 2019. "Practical Path Guiding" in Production. In ACM SIGGRAPH Courses: Path Guiding in Production, Chapter 10. ACM, New York, NY, USA, 18:35--18:48. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Thomas Müller, Markus Gross, and Jan Novák. 2017. Practical path guiding for efficient light-transport simulation. In Computer Graphics Forum, Vol. 36. Wiley Online Library, 91--100.Google ScholarGoogle Scholar
  32. Thomas Müller, Brian McWilliams, Fabrice Rousselle, Markus Gross, and Jan Novák. 2019. Neural importance sampling. ACM Transactions on Graphics (TOG) 38, 5 (2019), 1--19.Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Thomas Müller, Fabrice Rousselle, Alexander Keller, and Jan Novák. 2020. Neural control variates. ACM Transactions on Graphics (TOG) 39, 6 (2020), 1--19.Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Steven G Parker, James Bigler, Andreas Dietrich, Heiko Friedrich, Jared Hoberock, David Luebke, David McAllister, Morgan McGuire, Keith Morley, Austin Robison, et al. 2010. OptiX: a general purpose ray tracing engine. Acm transactions on graphics (tog) 29, 4 (2010), 1--13.Google ScholarGoogle Scholar
  35. Alexander Rath, Pascal Grittmann, Sebastian Herholz, Petr Vévoda, Philipp Slusallek, and Jaroslav Křivánek. 2020. Variance-Aware Path Guiding. ACM Transactions on Graphics (Proceedings of SIGGRAPH 2020) 39, 4 (July 2020), 151:1--151:12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Gernot Riegler, Ali Osman Ulusoy, and Andreas Geiger. 2017. Octnet: Learning deep 3d representations at high resolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 3577--3586.Google ScholarGoogle ScholarCross RefCross Ref
  37. Olaf Ronneberger, Philipp Fischer, and Thomas Brox. 2015. U-net: Convolutional networks for biomedical image segmentation. In International Conference on Medical image computing and computer-assisted intervention. Springer, 234--241.Google ScholarGoogle ScholarCross RefCross Ref
  38. Lukas Ruppert, Sebastian Herholz, and Hendrik P. A. Lensch. 2020. Robust Fitting of Parallax-Aware Mixtures for Path Guiding. ACM Transactions on Graphics (TOG) (2020).Google ScholarGoogle Scholar
  39. Peter Shirley, Bretton Wade, Philip M Hubbard, David Zareski, Bruce Walter, and Donald P Greenberg. 1995. Global illumination via density-estimation. In Rendering Techniques' 95. Springer, 219--230.Google ScholarGoogle Scholar
  40. Turbo Squid. 2020. 3D Models, Plugins, Textures, and more at Turbo Squid.Google ScholarGoogle Scholar
  41. Maxim Tatarchenko, Alexey Dosovitskiy, and Thomas Brox. 2017. Octree generating networks: Efficient convolutional architectures for high-resolution 3d outputs. In Proceedings of the IEEE International Conference on Computer Vision. 2088--2096.Google ScholarGoogle ScholarCross RefCross Ref
  42. CG Trader. 2020. Cg trader. URL http://www.cgtrader.com 4 (2020).Google ScholarGoogle Scholar
  43. Eric Veach. 1997. Robust Monte Carlo methods for light transport simulation. Vol. 1610. Stanford University PhD thesis.Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. Eric Veach and Leonidas Guibas. 1995a. Bidirectional estimators for light transport. In Photorealistic Rendering Techniques. Springer, 145--167.Google ScholarGoogle Scholar
  45. Eric Veach and Leonidas J Guibas. 1995b. Optimally combining sampling techniques for Monte Carlo rendering. In Proceedings of the 22nd annual conference on Computer graphics and interactive techniques. 419--428.Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. Thijs Vogels, Fabrice Rousselle, Brian McWilliams, Gerhard Röthlin, Alex Harvill, David Adler, Mark Meyer, and Jan Novák. 2018. Denoising with kernel prediction and asymmetric loss functions. ACM Transactions on Graphics (TOG) 37, 4 (2018), 1--15.Google ScholarGoogle ScholarDigital LibraryDigital Library
  47. Jiří Vorba, Johannes Hanika, Sebastian Herholz, Thomas Müller, Jaroslav Křivánek, and Alexander Keller. 2019. Path Guiding in Production. In ACM SIGGRAPH Courses. ACM, New York, NY, USA, 18:1--18:77. Google ScholarGoogle ScholarDigital LibraryDigital Library
  48. Jiří Vorba, Ondřej Karlík, Martin Šik, Tobias Ritschel, and Jaroslav Křivánek. 2014. On-line learning of parametric mixture models for light transport simulation. ACM Transactions on Graphics (TOG) 33, 4 (2014), 1--11.Google ScholarGoogle ScholarDigital LibraryDigital Library
  49. Jiří Vorba and Jaroslav Křivánek. 2016. Adjoint-driven Russian roulette and splitting in light transport simulation. ACM Transactions on Graphics (TOG) 35, 4 (2016), 1--11.Google ScholarGoogle ScholarDigital LibraryDigital Library
  50. Peng-Shuai Wang, Yang Liu, Yu-Xiao Guo, Chun-Yu Sun, and Xin Tong. 2017. O-CNN: Octree-based Convolutional Neural Networks for 3D Shape Analysis. ACM Transactions on Graphics (SIGGRAPH) 36, 4 (2017).Google ScholarGoogle ScholarDigital LibraryDigital Library
  51. Peng-Shuai Wang, Yang Liu, and Xin Tong. 2020. Deep Octree-based CNNs with Output-Guided Skip Connections for 3D Shape and Scene Completion. Computer Vision and Pattern Recognition (CVPR) Workshops.Google ScholarGoogle ScholarCross RefCross Ref
  52. Peng-Shuai Wang, Chun-Yu Sun, Yang Liu, and Xin Tong. 2018. Adaptive O-CNN: A Patch-based Deep Representation of 3D Shapes. ACM Transactions on Graphics (SIGGRAPH Asia) 37, 6 (2018).Google ScholarGoogle Scholar
  53. Quan Zheng and Matthias Zwicker. 2019. Learning to importance sample in primary sample space. In Computer Graphics Forum, Vol. 38. Wiley Online Library, 169--179.Google ScholarGoogle Scholar
  54. Shilin Zhu, Zexiang Xu, Henrik Wann Jensen, Hao Su, and Ravi Ramamoorthi. 2020a. Deep Kernel Density Estimation for Photon Mapping. In Computer Graphics Forum, Vol. 39. Wiley-Blackwell.Google ScholarGoogle Scholar
  55. Shilin Zhu, Zexiang Xu, Tiancheng Sun, Alexandr Kuznetsov, Mark Meyer, Henrik Wann Jensen, Hao Su, and Ravi Ramamoorthi. 2020b. Photon-Driven Neural Path Guiding. arXiv preprint arXiv:2010.01775 (2020).Google ScholarGoogle Scholar

Index Terms

  1. Hierarchical neural reconstruction for path guiding using hybrid path and photon samples

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in

    Full Access

    • Published in

      cover image ACM Transactions on Graphics
      ACM Transactions on Graphics  Volume 40, Issue 4
      August 2021
      2170 pages
      ISSN:0730-0301
      EISSN:1557-7368
      DOI:10.1145/3450626
      Issue’s Table of Contents

      Copyright © 2021 Owner/Author

      Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses, contact the Owner/Author.

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 19 July 2021
      Published in tog Volume 40, Issue 4

      Check for updates

      Qualifiers

      • research-article

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader