skip to main content
research-article
Public Access

A unified second-order accurate in time MPM formulation for simulating viscoelastic liquids with phase change

Published:19 July 2021Publication History
Skip Abstract Section

Abstract

We assume that the viscous forces in any liquid are simultaneously local and non-local, and introduce the extended POM-POM model [McLeish and Larson 1998; Oishi et al. 2012; Verbeeten et al. 2001] to computer graphics to design a unified constitutive model for viscosity that generalizes prior models, such as Oldroyd-B, the Upper-convected Maxwell (UCM) model [Sadeghy et al. 2005], and classical Newtonian viscosity under one umbrella, recovering each of them with different parameter values. Implicit discretization of our model via backward Euler recovers the variational Stokes solver of [Larionov et al. 2017] for Newtonian viscosity. For greater accuracy, however, we introduce the second-order accurate Generalized Single Step Single Solve (GS4) scheme [Tamma et al. 2000; Zhou and Tamma 2004] to computer graphics, which recovers all prior second-order accurate time integration schemes to date. Using GS4 and our generalized constitutive model, we present a Material Point Method (MPM) for simulating various viscoelastic liquid behaviors, such as classical liquid rope coiling, buckling, folding, and shear thinning/thickening. In addition, we show how to couple our viscoelastic liquid simulator with the recently introduced non-Fourier heat diffusion solver [Xue et al. 2020] for simulating problems with phase change, such as melting chocolate and digital fabrication with 3D printing. While the discretization of heat diffusion is slightly different within GS4, we show that it can still be efficiently solved using an assembly-free Multigrid-preconditioned Conjugate Gradients solver. We present end-to-end 3D simulations to demonstrate the versatility of our framework.

Skip Supplemental Material Section

Supplemental Material

a119-su.mp4
3450626.3459820.mp4

References

  1. Mridul Aanjaneya, Chengguizi Han, Ryan Goldade, and Christopher Batty. 2019. An Efficient Geometric Multigrid Solver for Viscous Liquids. Proceedings of the ACM on Computer Graphics and Interactive Techniques 2, 2 (2019), 1--21.Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Stefan Band, Christoph Gissler, Andreas Peer, and Matthias Teschner. 2018. MLS Pressure Extrapolation for the Boundary Handling in Divergence-Free SPH. In Proceedings of the 14th Workshop on Virtual Reality Interactions and Physical Simulations (VRIPHYS '18). Eurographics Association, 55--63.Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Héctor Barreiro, Ignacio García-Fernández, Iván Alduán, and Miguel A. Otaduy. 2017. Conformation Constraints for Efficient Viscoelastic Fluid Simulation. ACM Trans. Graph. 36, 6, Article 221 (2017), 11 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Cx K Batchelor and GK Batchelor. 2000. An introduction to fluid dynamics. Cambridge university press.Google ScholarGoogle ScholarCross RefCross Ref
  5. Christopher Batty and Robert Bridson. 2008. Accurate Viscous Free Surfaces for Buckling, Coiling, and Rotating Liquids.. In Symposium on Computer Animation. 219--228.Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Christopher Batty and Ben Houston. 2011. A simple finite volume method for adaptive viscous liquids. In Proceedings of the 2011 ACM SIGGRAPH/Eurographics Symposium on Computer Animation. 111--118.Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Christopher Batty, Andres Uribe, Basile Audoly, and Eitan Grinspun. 2012. Discrete viscous sheets. ACM Transactions on Graphics (TOG) 31, 4 (2012), 1--7.Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Jan Bender and Dan Koschier. 2017. Divergence-Free SPH for Incompressible and Viscous Fluids. IEEE Transactions on Visualization and Computer Graphics 23, 3 (2017), 1193--1206.Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. J. Bender, Tassilo Kugelstadt, M. Weiler, and Dan Koschier. 2020. Implicit Frictional Boundary Handling for SPH. IEEE Transactions on Visualization and Computer Graphics 26 (2020), 2982--2993.Google ScholarGoogle ScholarCross RefCross Ref
  10. Miklós Bergou, Basile Audoly, Etienne Vouga, Max Wardetzky, and Eitan Grinspun. 2010. Discrete Viscous Threads. ACM Trans. Graph. 29, 4, Article 116 (2010), 10 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Volodymyr Valeriyovych Bilovol. 2003. Mould filling simulations during powder injection moulding. (2003).Google ScholarGoogle Scholar
  12. G Bishko, TCB McLeish, OG Harlen, and RG Larson. 1997. Theoretical molecular rheology of branched polymers in simple and complex flows: The pom-pom model. Physical Review Letters 79, 12 (1997), 2352.Google ScholarGoogle ScholarCross RefCross Ref
  13. Javier Bonet and Richard D Wood. 1997. Nonlinear continuum mechanics for finite element analysis. Cambridge university press.Google ScholarGoogle Scholar
  14. EK Borisenkova, VE Dreval, GV Vinogradov, MK Kurbanaliev, VV Moiseyev, and VG Shalganova. 1982. Transition of polymers from the fluid to the forced high-elastic and leathery states at temperatures above the glass transition temperature. Polymer 23, 1 (1982), 91--99.Google ScholarGoogle ScholarCross RefCross Ref
  15. Robert Bridson. 2015. Fluid simulation for computer graphics. CRC Press.Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. George E Brown, Matthew Overby, Zahra Forootaninia, and Rahul Narain. 2018. Accurate dissipative forces in optimization integrators. ACM Transactions on Graphics (TOG) 37, 6 (2018), 1--14.Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Rachel Caiden, Ronald P Fedkiw, and Chris Anderson. 2001. A numerical method for two-phase flow consisting of separate compressible and incompressible regions. J. Comput. Phys. 166, 1 (2001), 1--27.Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Mark Carlson, Peter J Mucha, R Brooks Van Horn III, and Greg Turk. 2002. Melting and flowing. In Proceedings of the 2002 ACM SIGGRAPH/Eurographics symposium on Computer animation. 167--174.Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Carlo Cattaneo. 1948. Sulla conduzione del calore. Atti Sem. Mat. Fis. Univ. Modena 3 (1948), 83--101.Google ScholarGoogle Scholar
  20. CI Christov. 2009. On frame indifferent formulation of the Maxwell-Cattaneo model of finite-speed heat conduction. Mechanics Research Communications 36, 4 (2009), 481--486.Google ScholarGoogle ScholarCross RefCross Ref
  21. Pascal Clausen, Martin Wicke, Jonathan R Shewchuk, and James F O'brien. 2013. Simulating liquids and solid-liquid interactions with lagrangian meshes. ACM Transactions on Graphics (TOG) 32, 2 (2013), 1--15.Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Nicolas Clemeur and Benoit Debbaut. 2007. A pragmatic approach for deriving constitutive equations endowed with pom-pom attributes. Rheologica acta 46, 9 (2007), 1187--1196.Google ScholarGoogle Scholar
  23. Mengyuan Ding, Xuchen Han, Stephanie Wang, Theodore F Gast, and Joseph M Teran. 2019. A thermomechanical material point method for baking and cooking. ACM Transactions on Graphics (TOG) 38, 6 (2019), 192.Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. A Cemal Eringen. 1992. Vistas of nonlocal continuum physics. International journal of engineering science 30, 10 (1992), 1551--1565.Google ScholarGoogle ScholarCross RefCross Ref
  25. A Cemal Eringen and DGB Edelen. 1972. On nonlocal elasticity. International journal of engineering science 10, 3 (1972), 233--248.Google ScholarGoogle Scholar
  26. Yu Fang, Minchen Li, Ming Gao, and Chenfanfu Jiang. 2019. Silly rubber: an implicit material point method for simulating non-equilibrated viscoelastic and elastoplastic solids. ACM Transactions on Graphics (TOG) 38, 4 (2019), 1--13.Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Adolph Fick. 1855. V. On liquid diffusion. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 10, 63 (1855), 30--39.Google ScholarGoogle ScholarCross RefCross Ref
  28. Wilhelm Flügge. 2013. Viscoelasticity. Springer Science & Business Media.Google ScholarGoogle Scholar
  29. Jean-Baptiste Joseph Fourier. 1878. Théorie analytique de la chaleur. Paris 1822. Engl. Übersetzung:"Theory o: Heat Transfer", Cambridge (1878).Google ScholarGoogle Scholar
  30. Albrecht Fröhlich and R Sack. 1946. Theory of the rheological properties of dispersions. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences 185, 1003 (1946), 415--430.Google ScholarGoogle Scholar
  31. Sumit Gajjar, Jaydeep Bhadani, Pramit Dutta, and Naveen Rastogi. 2017. Complete coverage path planning algorithm for known 2d environment. In 2017 2nd IEEE International Conference on Recent Trends in Electronics, Information & Communication Technology (RTEICT). IEEE, 963--967.Google ScholarGoogle ScholarCross RefCross Ref
  32. Ming Gao, Xinlei Wang, Kui Wu, Andre Pradhana, Eftychios Sifakis, Cem Yuksel, and Chenfanfu Jiang. 2018. GPU optimization of material point methods. ACM Transactions on Graphics (TOG) 37, 6 (2018), 1--12.Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Tolga G Goktekin, Adam W Bargteil, and James F O'Brien. 2004. A method for animating viscoelastic fluids. In ACM SIGGRAPH 2004 Papers. 463--468.Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Ryan Goldade, Yipeng Wang, Mridul Aanjaneya, and Christopher Batty. 2019. An adaptive variational finite difference framework for efficient symmetric octree viscosity. ACM Transactions on Graphics (TOG) 38, 4 (2019), 1--14.Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Mehdi Habibi, Maniya Maleki, Ramin Golestanian, Neil M Ribe, and Daniel Bonn. 2006. Dynamics of liquid rope coiling. Physical Review E 74, 6 (2006), 066306.Google ScholarGoogle ScholarCross RefCross Ref
  36. Francis H. Harlow and J. Eddie Welch. 1965. Numerical Calculation of Time-Dependent Viscous Incompressible Flow of Fluid with Free Surface. Physics of Fluids 8, 12 (1965), 2182--2189.Google ScholarGoogle ScholarCross RefCross Ref
  37. Kei Iwasaki, Hideyuki Uchida, Yoshinori Dobashi, and Tomoyuki Nishita. 2010. Fast particle-based visual simulation of ice melting. In Computer graphics forum, Vol. 29. Wiley Online Library, 2215--2223.Google ScholarGoogle Scholar
  38. Daniel D Joseph and Luigi Preziosi. 1989. Heat waves. Reviews of Modern Physics 61, 1 (1989), 41.Google ScholarGoogle ScholarCross RefCross Ref
  39. J Murali Krishnan, Abhijit P Deshpande, and PB Sunil Kumar. 2010. Rheology of complex fluids. Springer.Google ScholarGoogle Scholar
  40. E Kröner. 1967. Elasticity theory of materials with long range cohesive forces. International Journal of Solids and Structures 3, 5 (1967), 731--742.Google ScholarGoogle ScholarCross RefCross Ref
  41. Egor Larionov, Christopher Batty, and Robert Bridson. 2017. Variational stokes: a unified pressure-viscosity solver for accurate viscous liquids. ACM Transactions on Graphics (TOG) 36, 4 (2017), 1--11.Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. Ronald G Larson. 1999. The structure and rheology of complex fluids. Vol. 150. Oxford university press New York.Google ScholarGoogle Scholar
  43. C-Y David Lu, Peter D Olmsted, and RC Ball. 2000. Effects of non-local stress on the determination of shear banding flow. Physical Review Letters 84, 4 (2000), 642.Google ScholarGoogle ScholarCross RefCross Ref
  44. A. McAdams, E. Sifakis, and J. Teran. 2010. A Parallel Multigrid Poisson Solver for Fluids Simulation on Large Grids. In Proceedings of the 2010 ACM SIGGRAPH/Eurographics Symposium on Computer Animation (SCA '10). 65--74.Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. TCB McLeish and RG Larson. 1998. Molecular constitutive equations for a class of branched polymers: The pom-pom polymer. Journal of Rheology 42, 1 (1998), 81--110.Google ScholarGoogle ScholarCross RefCross Ref
  46. Matthias Müller, Simon Schirm, and Matthias Teschner. 2004. Interactive blood simulation for virtual surgery based on smoothed particle hydrodynamics. Technology and Health Care 12, 1 (2004), 25--31.Google ScholarGoogle ScholarDigital LibraryDigital Library
  47. Meraj Mustafa. 2015. Cattaneo-Christov heat flux model for rotating flow and heat transfer of upper-convected Maxwell fluid. Aip Advances 5, 4 (2015), 047109.Google ScholarGoogle ScholarCross RefCross Ref
  48. Kentaro Nagasawa, Takayuki Suzuki, Ryohei Seto, Masato Okada, and Yonghao Yue. 2019. Mixing sauces: A viscosity blending model for shear thinning fluids. ACM Transactions on Graphics (TOG) 38, 4 (2019), 1--17.Google ScholarGoogle ScholarDigital LibraryDigital Library
  49. James F O'brien and Jessica K Hodgins. 1999. Graphical modeling and animation of brittle fracture. In Proceedings of the 26th annual conference on Computer graphics and interactive techniques. 137--146.Google ScholarGoogle ScholarDigital LibraryDigital Library
  50. Raymond W Ogden. 1997. Non-linear elastic deformations. Courier Corporation.Google ScholarGoogle Scholar
  51. CM Oishi, FP Martins, MF Tomé, and MA Alves. 2012. Numerical simulation of drop impact and jet buckling problems using the eXtended Pom-Pom model. Journal of Non-Newtonian Fluid Mechanics 169 (2012), 91--103.Google ScholarGoogle ScholarCross RefCross Ref
  52. CM Oishi, FP Martins, Murilo F Tome, JA Cuminato, and Sean Mckee. 2011. Numerical solution of the eXtended Pom-Pom model for viscoelastic free surface flows. Journal of Non-Newtonian Fluid Mechanics 166, 3-4 (2011), 165--179.Google ScholarGoogle ScholarCross RefCross Ref
  53. James G Oldroyd. 1950. On the formulation of rheological equations of state. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences 200, 1063 (1950), 523--541.Google ScholarGoogle ScholarCross RefCross Ref
  54. Afonso Paiva, Fabiano Petronetto, Thomas Lewiner, and Geovan Tavares. 2009. Particle-based viscoplastic fluid/solid simulation. Computer-Aided Design 41, 4 (2009), 306--314.Google ScholarGoogle ScholarDigital LibraryDigital Library
  55. Peyman Pakdel and Gareth H McKinley. 1996. Elastic instability and curved streamlines. Physical Review Letters 77, 12 (1996), 2459.Google ScholarGoogle ScholarCross RefCross Ref
  56. Andreas Peer, Markus Ihmsen, Jens Cornelis, and Matthias Teschner. 2015. An implicit viscosity formulation for SPH fluids. ACM Transactions on Graphics (TOG) 34, 4 (2015), 1--10.Google ScholarGoogle ScholarDigital LibraryDigital Library
  57. Daniel Ram, Theodore Gast, Chenfanfu Jiang, Craig Schroeder, Alexey Stomakhin, Joseph Teran, and Pirouz Kavehpour. 2015. A material point method for viscoelastic fluids, foams and sponges. In Proceedings of the 14th ACM SIGGRAPH/Eurographics Symposium on Computer Animation. 157--163.Google ScholarGoogle ScholarDigital LibraryDigital Library
  58. Kayvan Sadeghy, Amir-Hosain Najafi, and Meghdad Saffaripour. 2005. Sakiadis flow of an upper-convected Maxwell fluid. International Journal of Non-Linear Mechanics 40, 9 (2005), 1220--1228.Google ScholarGoogle ScholarCross RefCross Ref
  59. Mohamed Shaat, Esmaeal Ghavanloo, and S Ahmad Fazelzadeh. 2020. Review on nonlocal continuum mechanics: physics, material applicability, and mathematics. Mechanics of Materials (2020), 103587.Google ScholarGoogle Scholar
  60. M Shimada and Kumar K Tamma. 2012. Conserving/dissipative algorithms and designs for a system of N particles: Total energy framework and single-field form. Computers & structures 112 (2012), 380--405.Google ScholarGoogle Scholar
  61. SL Sobolev. 2014. Nonlocal diffusion models: Application to rapid solidification of binary mixtures. International Journal of Heat and Mass Transfer 71 (2014), 295--302.Google ScholarGoogle ScholarCross RefCross Ref
  62. Arun R Srinivasa and JN Reddy. 2017. An overview of theories of continuum mechanics with nonlocal elastic response and a general framework for conservative and dissipative systems. Applied Mechanics Reviews 69, 3 (2017).Google ScholarGoogle ScholarCross RefCross Ref
  63. Jos Stam. 1999. Stable Fluids. In Proc. of ACM SIGGRAPH (SIGGRAPH '99). 121--128.Google ScholarGoogle Scholar
  64. Alexey Stomakhin, Craig Schroeder, Lawrence Chai, Joseph Teran, and Andrew Selle. 2013. A material point method for snow simulation. ACM Transactions on Graphics (TOG) 32, 4 (2013), 1--10.Google ScholarGoogle ScholarDigital LibraryDigital Library
  65. Alexey Stomakhin, Craig Schroeder, Chenfanfu Jiang, Lawrence Chai, Joseph Teran, and Andrew Selle. 2014. Augmented MPM for phase-change and varied materials. ACM Transactions on Graphics (TOG) 33, 4 (2014), 1--11.Google ScholarGoogle ScholarDigital LibraryDigital Library
  66. Dan Stora, Pierre-Olivier Agliati, Marie-Paule Cani, Fabrice Neyret, and Jean-Dominique Gascuel. 1999. Animating lava flows.Google ScholarGoogle Scholar
  67. Tetsuya Takahashi and Christopher Batty. 2020. Monolith: A Monolithic Pressure-Viscosity-Contact Solver for Strong Two-Way Rigid-Rigid Rigid-Fluid Coupling. ACM Trans. Graph. 39, 6, Article 182 (2020).Google ScholarGoogle ScholarDigital LibraryDigital Library
  68. Tetsuya Takahashi, Yoshinori Dobashi, Issei Fujishiro, Tomoyuki Nishita, and Ming C Lin. 2015. Implicit formulation for SPH-based viscous fluids. In Computer Graphics Forum, Vol. 34. Wiley Online Library, 493--502.Google ScholarGoogle Scholar
  69. T. Takahashi and M. Lin. 2019. A Geometrically Consistent Viscous Fluid Solver with Two-Way Fluid-Solid Coupling. Computer Graphics Forum 38 (2019).Google ScholarGoogle Scholar
  70. Kumar K Tamma, X Zhou, and D Sha. 2000. The time dimension: a theory towards the evolution, classification, characterization and design of computational algorithms for transient/dynamic applications. Archives of Computational Methods in Engineering 7, 2 (2000), 67--290.Google ScholarGoogle ScholarCross RefCross Ref
  71. RI Tanner. 1970. A theory of die-swell. Journal of Polymer Science Part A-2: Polymer Physics 8, 12 (1970), 2067--2078.Google ScholarGoogle ScholarCross RefCross Ref
  72. Demetri Terzopoulos and Kurt Fleischer. 1988. Modeling inelastic deformation: viscolelasticity, plasticity, fracture. In Proceedings of the 15th annual conference on Computer graphics and interactive techniques. 269--278.Google ScholarGoogle ScholarDigital LibraryDigital Library
  73. Ulrich Trottenberg, Cornelius W. Oosterlee, and Anton Schuller. 2001. Multigrid. Academic Press.Google ScholarGoogle Scholar
  74. BM Tymrak, Megan Kreiger, and Joshua M Pearce. 2014. Mechanical properties of components fabricated with open-source 3-D printers under realistic environmental conditions. Materials & Design 58 (2014), 242--246.Google ScholarGoogle ScholarCross RefCross Ref
  75. Da Yu Tzou. 2014. Macro-to microscale heat transfer: the lagging behavior. John Wiley & Sons.Google ScholarGoogle Scholar
  76. Wilco MH Verbeeten, Gerrit WM Peters, and Frank PT Baaijens. 2001. Differential constitutive equations for polymer melts: The extended Pom-Pom model. Journal of Rheology 45, 4 (2001), 823--843.Google ScholarGoogle ScholarCross RefCross Ref
  77. Vaughan R Voller and CR Swaminathan. 1991. ERAL Source-based method for solidification phase change. Numerical Heat Transfer, Part B Fundamentals 19, 2 (1991), 175--189.Google ScholarGoogle ScholarCross RefCross Ref
  78. Marcel Weiler, Dan Koschier, Magnus Brand, and Jan Bender. 2018. A Physically Consistent Implicit Viscosity Solver for SPH Fluids. Computer Graphics Forum (Eurographics) 37, 2 (2018).Google ScholarGoogle Scholar
  79. Chris Wojtan and Greg Turk. 2008. Fast viscoelastic behavior with thin features. In ACM SIGGRAPH 2008 papers. 1--8.Google ScholarGoogle ScholarDigital LibraryDigital Library
  80. Tao Xue, Haozhe Su, Chengguizi Han, Chenfanfu Jiang, and Mridul Aanjaneya. 2020. A novel discretization and numerical solver for non-fourier diffusion. ACM Transactions on Graphics (TOG) 39, 6 (2020), 1--14.Google ScholarGoogle ScholarDigital LibraryDigital Library
  81. Tao Xue, Kumar K Tamma, and Xiaobing Zhang. 2016. A consistent moving particle system simulation method: applications to parabolic/hyperbolic heat conduction type problems. International Journal of Heat and Mass Transfer 101 (2016), 365--372.Google ScholarGoogle ScholarCross RefCross Ref
  82. Tao Xue, Xiaobing Zhang, and Kumar K Tamma. 2018. Generalized heat conduction model involving imperfect thermal contact surface: application of the GSSSS-1 differential-algebraic equation time integration. International Journal of Heat and Mass Transfer 116 (2018), 889--896.Google ScholarGoogle ScholarCross RefCross Ref
  83. Yonghao Yue, Breannan Smith, Christopher Batty, Changxi Zheng, and Eitan Grinspun. 2015. Continuum foam: A material point method for shear-dependent flows. ACM Transactions on Graphics (TOG) 34, 5 (2015), 1--20.Google ScholarGoogle ScholarDigital LibraryDigital Library
  84. X Zhou and Kumar K Tamma. 2004. Design, analysis, and synthesis of generalized single step single solve and optimal algorithms for structural dynamics. Internat. J. Numer. Methods Engrg. 59, 5 (2004), 597--668.Google ScholarGoogle ScholarCross RefCross Ref
  85. Bo Zhu, Minjae Lee, Ed Quigley, and Ronald Fedkiw. 2015. Codimensional non-Newtonian fluids. ACM Transactions on Graphics (TOG) 34, 4 (2015), 1--9.Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. A unified second-order accurate in time MPM formulation for simulating viscoelastic liquids with phase change

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in

    Full Access

    • Published in

      cover image ACM Transactions on Graphics
      ACM Transactions on Graphics  Volume 40, Issue 4
      August 2021
      2170 pages
      ISSN:0730-0301
      EISSN:1557-7368
      DOI:10.1145/3450626
      Issue’s Table of Contents

      Copyright © 2021 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 19 July 2021
      Published in tog Volume 40, Issue 4

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader